化工进展 ›› 2021, Vol. 40 ›› Issue (1): 195-204.DOI: 10.16085/j.issn.1000-6613.2020-0541
收稿日期:
2020-04-08
出版日期:
2021-01-05
发布日期:
2021-01-12
通讯作者:
李谦
作者简介:
褚俊杰(1991—),男,硕士研究生,研究方向为催化过程工程。E-mail:基金资助:
Junjie CHU(), Jie CHANG, Zhibin LUO, Mingming HOU, Qian LI()
Received:
2020-04-08
Online:
2021-01-05
Published:
2021-01-12
Contact:
Qian LI
摘要:
碳酸乙烯酯是重要的化工基础原料和中间体,也是CO2资源化利用的路径之一,越来越受到人们的关注。然而,在生产过程中广泛存在着环氧乙烷纯化能耗高、反应过程催化效率低和工艺复杂等问题。本文综述了在生产碳酸乙烯酯过程中环氧乙烷的吸收单元、转化单元以及生产工艺,重点总结了吸收剂的类型、催化剂的种类和催化机理以及生产工艺。最后,针对碳酸乙烯酯的生产技术,探讨了该研究领域亟待解决的问题和面临的挑战,并指出多位点离子液体催化剂的开发以及吸收转化耦合工艺的应用将成为未来研究的热点,具有较好的工业化前景。
中图分类号:
褚俊杰, 常洁, 罗志斌, 侯明明, 李谦. 环氧乙烷吸收和转化合成碳酸酯工艺研究进展[J]. 化工进展, 2021, 40(1): 195-204.
Junjie CHU, Jie CHANG, Zhibin LUO, Mingming HOU, Qian LI. Research progress on absorption and conversion of ethylene oxide to ethylene carbonate[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 195-204.
催化剂 | 反应条件 | 转化率 /% | ||
---|---|---|---|---|
温度 /℃ | 压力 /MPa | 时间 /h | ||
铬(Ⅲ)希夫碱配合物[ | 75 | 6.8 | 1.5 | 100 |
胺-双(酚基)钴(Ⅱ)[ | 80 | 5 | 18 | 95 |
双核铝配合物[ | 100 | 1 | 18 | 100 |
铝(salphen)配合物[ | 50 | 1 | 24 | 96 |
铝-脂肪族复合物[ | 70 | 1 | 13 | 99.6 |
铝-卟啉配合物[ | 25 | 3 | 48 | 99 |
二元Al-络合物/ PPNCl[ | 70 | 1 | 24 | 99 |
NNO-异蝎形铝配合物[ | 50 | 0.1 | 24 | 100 |
铝(希夫碱)配合物[ | 25 | 1 | 24 | 89 |
蝎形铝配合物[ | 50 | 1 | 24 | 100 |
铝-氯化铝配合物[ | 35 | 1 | 24 | 100 |
铝-β-氨基醇配合物[ | 25 | 0.1 | 8 | 99 |
铝-脒基配合物[ | 25 | 0.1 | 24 | 100 |
铁吡啶基氨基双(酚类)配合物[ | 85 | 8 | 3 | 99 |
双核的铁(Ⅲ)复合物[ | 120 | 2 | 1 | 76 |
铁(Ⅲ)-氨基甲酸盐配合物[ | 25 | 0.1 | 24 | 99 |
单核铁(Ⅲ)配合物[ | 50 | 1 | 24 | 87 |
硫醚-三酚铁(Ⅲ)配合物[ | 100 | 2 | 6 | 95 |
双(苯氧基亚氨基)铁(Ⅲ)-氯复合体配合物[ | 130 | 5 | 5 | 95 |
锌、铜、铁超分子配合物[ | 145 | 1 | 3 | 89 |
表1 环碳酸酯合成以金属配合物为催化剂
催化剂 | 反应条件 | 转化率 /% | ||
---|---|---|---|---|
温度 /℃ | 压力 /MPa | 时间 /h | ||
铬(Ⅲ)希夫碱配合物[ | 75 | 6.8 | 1.5 | 100 |
胺-双(酚基)钴(Ⅱ)[ | 80 | 5 | 18 | 95 |
双核铝配合物[ | 100 | 1 | 18 | 100 |
铝(salphen)配合物[ | 50 | 1 | 24 | 96 |
铝-脂肪族复合物[ | 70 | 1 | 13 | 99.6 |
铝-卟啉配合物[ | 25 | 3 | 48 | 99 |
二元Al-络合物/ PPNCl[ | 70 | 1 | 24 | 99 |
NNO-异蝎形铝配合物[ | 50 | 0.1 | 24 | 100 |
铝(希夫碱)配合物[ | 25 | 1 | 24 | 89 |
蝎形铝配合物[ | 50 | 1 | 24 | 100 |
铝-氯化铝配合物[ | 35 | 1 | 24 | 100 |
铝-β-氨基醇配合物[ | 25 | 0.1 | 8 | 99 |
铝-脒基配合物[ | 25 | 0.1 | 24 | 100 |
铁吡啶基氨基双(酚类)配合物[ | 85 | 8 | 3 | 99 |
双核的铁(Ⅲ)复合物[ | 120 | 2 | 1 | 76 |
铁(Ⅲ)-氨基甲酸盐配合物[ | 25 | 0.1 | 24 | 99 |
单核铁(Ⅲ)配合物[ | 50 | 1 | 24 | 87 |
硫醚-三酚铁(Ⅲ)配合物[ | 100 | 2 | 6 | 95 |
双(苯氧基亚氨基)铁(Ⅲ)-氯复合体配合物[ | 130 | 5 | 5 | 95 |
锌、铜、铁超分子配合物[ | 145 | 1 | 3 | 89 |
1 | 张玉宝. 碳酸乙烯酯的性质与应用[J]. 沈阳师范大学学报(自然科学版), 1997(4): 46-48. |
ZHANG Yubao. The properties and applications of ethylene carbonate[J]. Journal of Shenyang Normal University (Natural Science Edition), 1997(4): 46-48. | |
2 | PAYNE R, THEODOROU I E. Dielectric properties and relaxation in ethylene carbonate and propylene carbonate[J]. The Journal of Physical Chemistry, 1972, 76(20): 2892-2900. |
3 | 程玲, 周建成, 吴东方. 碳酸乙烯酯的合成及应用进展[J]. 精细石油化工进展, 2008, 9(12): 44-52. |
CHENG Ling, ZHOU Jiancheng, WU Dongfang. Progress in the synthesis and application of ethylene carbonate[J]. Progress in Fine Petrochemicals, 2008, 9(12): 44-52. | |
4 | 陈向华, 孙凯. EO的生产方法及应用[J]. 化工科技市场, 2008, 31(10): 33-36. |
CHEN Xianghua, SUN Kai. Production method and application of EO[J]. Chemical Technology Market, 2008, 31(10): 33-36. | |
5 | BUKHTIYAROV V I, KNOP-GERICKE A. Ethylene epoxidation over silver catalysts[M]//HESS C, SCHLÖGL R. Nanostructured Catalysts: Selective Oxidations, Knovel, 2011: 214-247. |
6 | 姚小利, 姚虎卿, 堵文斌. 活性炭变压吸附回收环氧乙烷装置排放气中的乙烯[J]. 化工进展, 2003, 22(9): 969-972. |
YAO Xiaoli, YAO Huqing, DU Wenbin. Recovering ethylene from vent gas of ethylene oxide plant by activated carbon with process[J]. Chemical Industry and Engineering Progress, 2003, 22(9): 969-972. | |
7 | GUMEROV F M, SABIRZYANOV A N, GUMEROVA G I, et al. Separation of ethylene oxide from its aqueous solution by supercritical fluid extraction[J]. Theoretical Foundations of Chemical Engineering, 2006, 40(3): 265-269. |
8 | OZERO B I. Process for the recovery of ethylene oxide: US3964980[P]. 1976-06-22. |
9 | 布莱恩·奥佐罗. 改进的EO回收方法: CN101952268[P]. 2013-10-30. |
OZERO B. Improvement of EO recovery method: CN101952268[P]. 2013-10-30. | |
10 | B·贝斯林, H·哈瑟, J·普吕克汉, 等. 通过蒸馏提纯环氧乙烷的方法: CN1290837C[P]. 2006-12-20. |
BESLIN B, HASSE H, PLUKHAN J, et al. Method of purifying ethylene oxide by distillation: CN1290837C[P]. 2006-12-20. | |
11 | 斯特德维泽, 奥斯本, 德弗, 等. 环氧烷纯化方法和系统: CN105148551A[P]. 2015-12-16. |
STADLWIESER K P, OSBORNE B B, DEVER J P, et al. Method and system for purification of alkylene oxide: CN105148551A[P]. 2015-12-16. | |
12 | 张军, 刘士达, 潘晓宏, 等. 一种环氧乙烷装置用吸收系统: CN206473984U[P]. 2017-09-08. |
ZHANG Jun, LIU Shida, PAN Xiaohong, et al. An absorption system for ethylene oxide devices: US206473984U[P]. 2017-09-08. | |
13 | 耿鹏. 一种环氧乙烷吸收回收装置: CN209060854U[P]. 2019-07-05. |
GENG Peng. Ethylene oxide absorbing and recycling device: CN209060854U[P]. 2019-07-05. | |
14 | LIU Jingru, ZHANG Fan, XU Wei, et al. Thermal reactivity of ethylene oxide in contact with contaminants: a review[J]. Thermochimica Acta, 2017, 652: 85-96. |
15 | GIOACCHINO C, BENEDETTO C, GIANNI J. Process for the simultaneous separation of ethylene oxide and carbon dioxide from the gaseous mixtures obtained in the direct oxidation of ethylene with oxygen: US3948621[P]. 1976-04-06. |
16 | DALE A R, OLIVER C A. Ethylene carbonate process: US4233221[P]. 1980-11-11. |
17 | KAZUKI K, KAZUHIKO M, TOSHIYUKI F. Method of recovery ethylene oxide: US5559255[P]. 1996-09-24. |
18 | 陈玮娜. 以碳酸乙烯酯为吸收剂吸收环氧乙烷的方法[J]. 化工技术与开发, 2013(10): 34-36. |
CHEN Weina. Method of absorbing ethylene oxide with ethylene carbonate as absorbent[J]. Chemical Technology and Development, 2013(10): 34-36. | |
19 | 李骏, 杨为民, 何文军. 环氧乙烷纯化方法: CN109422708A[P]. 2019-03-05. |
LI Jun, YANG Weimin, HE Wenjun. Purification method of ethylene oxide: CN109422708A[P]. 2019-03-05. | |
20 | 成卫国, 褚俊杰, 董丽, 等. 一种复合吸收剂及其用于环氧乙烷分离纯化的方法: CN110479037A[P]. 2019-11-22. |
CHENG Weiguo, CHU Junjie, DONG Li, et al. A composite absorbent used in the separation and purification of ethylene oxide: CN110479037A[P]. 2019-11-22. | |
21 | YANG Zhenzhen, ZHAO Yanan, He Liangnian. CO2 chemistry: task-specific ionic liquids for CO2 capture/activation and subsequent conversion[J]. ChemInform, 2011, 43(4): 545-567. |
22 | ALVES M, GRIGNARD B, MEREAU R, et al. Organocatalyzed coupling of carbon dioxide with epoxides for the synthesis of cyclic carbonates: catalyst design and mechanistic studies[J]. Catalysis Science & Technology, 2017, 7(13): 2651-2684. |
23 | YAMAGUCHI K, EBITANI K, YOSHIDA T, et al. ChemInform abstract: Mg-Al mixed oxides as highly active acid-base catalysts for cycloaddition of carbon dioxide to epoxides[J]. Journal of the American Chemical Society, 1999, 121(18): 4526-4527. |
24 | DAI Weili, YIN Shuangfeng, GUO Rui, et al. Synthesis of propylene carbonate from carbon dioxide and propylene oxide using Zn-Mg-Al composite oxide as high-efficiency catalyst[J]. Catalysis Letters, 2010, 136(1/2): 35-44. |
25 | WANG Yanyan, LI Shaopeng, YANG Youdi, et al. A fully heterogeneous catalyst Br-LDH for the cycloaddition reactions of CO2 with epoxides[J]. Chemical Communications, 2019, 55(48): 6942-6945. |
26 | CALO V, NACCI A, MONOPOLI A, et al. Cyclic carbonate formation from carbon dioxide and oxiranes in tetrabutylammonium halides as solvents and catalysts[J]. Cheminform, 2002, 33(48): 2561-2563. |
27 | SUN J, WANG L, ZHANG S, et al. ZnCl2/phosphonium halide: an efficient Lewis acid/base catalyst for the synthesis of cyclic carbonate[J]. Journal of Molecular Catalysis A: Chemical, 2006, 256(1/2): 295-300. |
28 | KIM H S, BAE J, LEE J S, et al. Phosphine-bound zinc halide complexes for the coupling reaction of ethylene oxide and carbon dioxide[J]. Journal of Catalysis, 2005, 232(1): 80-84. |
29 | KUMATABARA Y, OKADA M, SHIRAKAWA S. Triethylamine hydroiodide as a simple yet effective bifunctional catalyst for CO2, fixation reactions with epoxides under mild conditions[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(8): 7295-7301. |
30 | ZHOU Hui, WANG Guoxu, ZHANG Wenzhen, et al. CO2 adducts of phosphorus ylides: highly active organocatalysts for carbon dioxide transformation[J]. ACS Catalysis, 2015, 5(11): 6773-6779. |
31 | SONG J, ZHANG Z, HU S, et al. MOF-5/n-Bu4NBr: an efficient catalyst system for the synthesis of cyclic carbonates from epoxides and CO2 under mild conditions[J]. Cheminform, 2009, 11(7):1031-1036. |
32 | ROKICKI G, KURAN W. Cyclic carbonates from carbon dioxide and oxiranes[J]. Monatshefte fuer Chemie, 1984, 115(2): 205-214. |
33 | GHOSH A, RAMIDI P, PULLA S, et al. Cycloaddition of CO2 to epoxides using a highly active Co() complex of tetraamidomacrocyclic ligand[J]. Catalysis Letters, 2010, 137(1/2): 1-7. |
34 | RAMIDI P, MUNSHI P, GARTIA Y, et al. Synergistic effect of alkali halide and Lewis base on the catalytic synthesis of cyclic carbonate from CO2 and epoxide[J]. Chemical Physics Letters, 2011, 512(4/5/6): 273-277. |
35 | PADDOCK R L, NGUYEN S T. Chemical CO2 fixation: Cr(Ⅲ) salen complexes as highly efficient catalysts for the coupling of CO2 and epoxides[J]. Journal of the American Chemical Society, 2001, 123(46): 11498-11499. |
36 | REITER M, ALTENBUCHNER P T, KISSLING S, et al. Amine-bis(phenolato) cobalt(Ⅱ) catalysts for the formation of organic carbonates from carbon dioxide and epoxides[J]. European Journal of Inorganic Chemistry, 2015, 10: 1766-1774. |
37 | RINTJEMA J, KLEIJ A W. Aluminum-mediated formation of cyclic carbonates: benchmarking catalytic performance metrics[J]. ChemSusChem, 2017, 10(6): 1274-1282. |
38 | WU Xiao, NORTH M. A bimetallic aluminium (salphen) complex for the synthesis of cyclic carbonates from epoxides and carbon dioxide[J]. ChemSusChem, 2016, 10(1): 74-78. |
39 | KIM So Han, HAN Sang Yeop, KIM Jeong Hee, et al. Monomeric or dimeric aluminum complexes as catalysts for cycloaddition between CO2 and epoxides[J]. European Journal of Inorganic Chemistry, 2015, 13: 2323-2329. |
40 | ZHUO Chunwei, QIN Yusheng, WANG Xianhong, et al. Temperature-responsive catalyst for the coupling reaction of carbon dioxide and propylene oxide[J]. Chinese Journal of Chemistry, 2018, 36(4): 299-305. |
41 | PEÑA C L, FRAILE C. Fatty acid based biocarbonates: Al-mediated stereoselective preparation of mono-, di- and tricarbonates under mild and solvent-less conditions[J]. Green Chemistry, 2017, 19(15): 3535-3541. |
42 | MARTÍNEZ J, CASTRO-OSMA J A, ALONSO-MORENO C, et al. One-component aluminium (heteroscorpionate) catalysts for the formation of cyclic carbonates from epoxides and carbon dioxide[J]. ChemSusChem, 2016, 10(6): 1175-1185. |
43 | CASTRO-OSMA J A, NORTH M, WU Xiao. Development of a halide-free aluminium-based catalyst for the synthesis of cyclic carbonates from epoxides and carbon dioxide[J]. Chemistry: A European Journal, 2014, 20(46): 15005-15008. |
44 | CASTRO-OSMA J A, ALONSO-MORENO C, LARA-SÁNCHEZ A, et al. Synthesis of cyclic carbonates catalysed by aluminium heteroscorpionate complexes[J]. Catal. Sci. Technol. Chem. Eur. J., 2015, 21(27): 9850-9862 |
45 | RULEV Y A, ZALINA G, MALEEV V I, et al. Robust bifunctional aluminium-salen catalysts for the preparation of cyclic carbonates from carbon dioxide and epoxides[J]. Beilstein Journal of Organic Chemistry, 2015, 11(49): 1614-1623. |
46 | VERMA S, SI M K, KURESHY R I. Chemical fixation of CO2 to cyclic carbonates using Al(Ⅲ) β-aminoalcohol based efficient catalysts: an experimental and computational studies[J]. Journal of Molecular Catalysis A: Chemical, 2016, 417(11): 135-144. |
47 | MELÉNDEZ D O, LARA-SÁNCHEZ A, MARTÍNEZ J. Amidinate aluminium complexes as catalysts for carbon dioxide fixation into cyclic carbonates[J]. ChemCatChem, 2018, 10(10): 2271-2277. |
48 | TAHERIMEHR M, SERT J P C C, KLEIJ A W, et al. New iron pyridylamino-bis(phenolate) catalyst for converting CO2 into cyclic carbonates and cross-linked polycarbonates[J]. ChemSusChem, 2015, 8(6): 1034-1042. |
49 | MONICA F D, VUMMALETI S V C, BUONERBA A, et al. Coupling of carbon dioxide with epoxides efficiently catalyzed by thioether-triphenolate bimetallic iron(Ⅲ) complexes SI[J]. Advanced Synthesis & Catalysis, 2016, 358(20): 3231-3243. |
50 | GUIDO P, GIULIO B, MARCO B, et al. Iron() N,N-dialkylcarbamates catalyze the formation of cyclic carbonates from carbon dioxide and epoxides at ambient conditions via dynamic CO2 trapping as carbamato ligand[J]. ChemSusChem, 2018, 11(16): 2737-2743. |
51 | FRANCESCO D M, BHOLANATH M, THOMAS P. [OSSO]-type iron() complexes for the low-pressure reaction of carbon dioxide with epoxides: catalytic activity, reaction kinetics and computational study[J]. ACS Catalysis, 2018, 8(8): 6882-6893. |
52 | BUONERBA A, DE NISI A, GRASSI A, et al. Novel iron(Ⅲ) catalyst for the efficient and selective coupling of carbon dioxide and epoxides to cyclic carbonates[J]. Catalysis Science & Technology, 2015, 5(1): 118-123. |
53 | AL-QAISI, FEDA A, GENJANG N, et al. Synthesis, structure and catalytic activity of bis(phenoxyiminato) iron() complexes in coupling reaction of CO2 and epoxides[J]. Inorganica Chimica Acta, 2016, 442: 81-85. |
54 | PENG Jing, YANG Haijian, GENG Yongchao, et al. Novel recyclable supramolecular metal complexes for the synthesis of cyclic carbonates from epoxides and CO2 under solvent-free conditions[J]. Journal of CO2 Utilization, 2017, 17: 243-255. |
55 | 张锁江. 离子液体: 从基础研究到工业应用[M]. 北京: 化学工业出版社, 2006. |
ZHANG Suojiang. Ionic liquids: from basic research to industrial applications[M]. Beijing: Chemical Industry Press, 2006. | |
56 | 费腾, 张延强, 杜耀, 等. 自燃离子液体的研究进展[J]. 含能材料, 2016, 10(24): 1017-1028. |
FEI Teng, ZHANG Yanqiang, DU Yao, et al. Review on hypergolic ionic liquids[J]. Chinese Journal of Energetic Materials, 2016, 10(24): 1017-1028. | |
57 | SONG Jinliang, ZHANG Binbin, ZHANG Peng, et al. Highly efficient synthesis of cyclic carbonates from CO2 and epoxides catalyzed by KI/lecithin[J]. Catalysis Today, 2012, 183(1): 130-135. |
58 | PENG Jiajian, DENG Youquan. Cycloaddition of carbon dioxide to propylene oxide catalyzed by ionic liquids[J]. New Journal of Chemistry, 2001, 25(4): 639-641. |
59 | SUN Jian, ZHANG Suojiang, CHENG Weiguo, et al. Hydroxyl-functionalized ionic liquid: a novel efficient catalyst for chemical fixation of CO2 to cyclic carbonate[J]. Tetrahedron Letters, 2008, 49(22): 3588-3591. |
60 | SUN Jian, CHENG Weiguo, ZHANG Suojiang, et al. Reusable and efficient polymer-supported task-specific ionic liquid catalyst for cycloaddition of epoxide with CO2[J]. Catalysis Today, 2009, 148: 361-367. |
61 | ZHOU Yinxi, HU Suqin, MA Xiumin, et al. Synthesis of cyclic carbonates from carbon dioxide and epoxides over betaine-based catalysts[J]. Journal of Molecular Catalysis A: Chemical, 2008, 284(1/2): 52-57. |
62 | ZHANG Yuanyuan, YIN Shuangfeng, LUO Shenglian, et al. Cycloaddition of CO2 to epoxides catalyzed by carboxyl-functionalized imidazoliumbased ionic liquid grafted onto cross-linked polymer[J]. Industrial & Engineering Chemistry Research, 2012, 51: 3951-3957. |
63 | HAN Lina, CHOI Hye-Ji, CHOI Soo-Jin, et al. Ionic liquids containing carboxyl acid moieties grafted onto silica: synthesis and application as heterogeneous catalysts for cycloaddition reactions of epoxide and carbon dioxide[J]. Green Chemistry, 2011, 13(4): 1023-1028. |
64 | RAJENDRA B. Synergistic effect of a binary ionic liquid/base catalytic system for efficient conversion of epoxide and carbon dioxide into cyclic carbonates[J]. Journal of CO2 Utilization, 2019, 33: 284-291. |
65 | LIU Ning, XIE Yafei, WANG Chuan, et al. Cooperative multi-functional organocatalysts for ambient conversion of carbon dioxide into cyclic carbonates[J]. ACS Catalysis, 2018, 8: 9945-9957. |
66 | HU Jiayin, MA Jun, LIU Huizhen, et al. Dual-ionic liquid system: an efficient catalyst for chemical fixation of CO2 to cyclic carbonates under mild conditions[J]. Green Chemistry, 2018, 20(13): 2990-2994. |
67 | LIU Fusheng, GU Yongqiang, ZHAO Penghui. Cooperative conversion of CO2 to cyclic carbonates in dual-ionic ammonium salts catalytic medium at ambient temperature[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(6): 5940-5945. |
68 | SHI Lijuan, XU Shaobo, ZHANG Qiri, et al. Ionic liquid/quaternary ammonium salt integrated heterogeneous catalytic system for the efficient coupling of carbon dioxide with epoxides[J]. Industrial & Engineering Chemistry Research, 2018, 57(45): 15319-15328. |
69 | 刘雪静, 吕庆霖, 别福生. 一种环氧乙烷装置联产碳酸乙烯酯的方法: CN 108467383A[P]. 2018-08-31. |
LIU Xuejing, Qinglin LYU, BIE Fusheng. A method for producing ethylene carbonate by coupling of ethylene oxide absorption device: CN 108467383A[P]. 2018-08-31. | |
70 | 成卫国, 董丽, 褚俊杰, 等. 一种复合吸收剂及其用于环氧乙烷吸收转化耦合联产碳酸乙烯酯的方法: CN 201910785196.2[P]. 2019-11-12. |
CHENG Weiguo, DONG Li, CHU Junjie, et al. Absorbents for ethylene oxide absorption and conversion coupling production of ethylene carbonate: CN 201910785196.2[P]. 2019-11-12. |
[1] | 李季桐, 王刚, 熊亚选, 徐钱. 不同工质单效吸收式制冷系统的能量和㶲分析[J]. 化工进展, 2023, 42(S1): 104-112. |
[2] | 李梦圆, 郭凡, 李群生. 聚乙烯醇生产中回收工段第三、第四精馏塔的模拟与优化[J]. 化工进展, 2023, 42(S1): 113-123. |
[3] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[4] | 马伊, 曹世伟, 王家骏, 林立群, 邢延, 曹腾良, 卢峰, 赵振伦, 张志军. 低共熔溶剂回收废旧锂离子电池正极材料的研究进展[J]. 化工进展, 2023, 42(S1): 219-232. |
[5] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[6] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[7] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[8] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[9] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[10] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[11] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[12] | 张杰, 王放放, 夏忠林, 赵光金, 马双忱. “双碳”目标下SF6排放现状、减排手段分析及未来展望[J]. 化工进展, 2023, 42(S1): 447-460. |
[13] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[14] | 张凤岐, 崔成东, 鲍学伟, 朱炜玄, 董宏光. 胺液吸收-分步解吸脱硫工艺的设计与评价[J]. 化工进展, 2023, 42(S1): 518-528. |
[15] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |