化工进展 ›› 2021, Vol. 40 ›› Issue (1): 487-504.DOI: 10.16085/j.issn.1000-6613.2020-0538
收稿日期:
2020-04-07
出版日期:
2021-01-05
发布日期:
2021-01-12
通讯作者:
刘希涛
作者简介:
张振国(1994—),女,博士研究生,研究方向为土壤污染控制。E-mail:基金资助:
Zhenguo ZHANG1(), Xitao LIU1(), Ling LAI1, Xiujuan FENG2,3
Received:
2020-04-07
Online:
2021-01-05
Published:
2021-01-12
Contact:
Xitao LIU
摘要:
机械化学法作为一种非焚烧处理技术,具有反应条件温和、操作简单、高效清洁和适用范围广等特点,近年来受到广泛关注,尤其是在对氯代有机污染物的削减中表现出显著的优势。本文综述了机械化学法在降解氯代有机污染物领域的研究进展,介绍了机械化学法的发展及其特性,归纳总结了常用于球磨体系中的单一添加剂和组合添加剂的种类,探究了球磨装置及运行参数对氯代有机污染物降解的影响;重点阐述了添加剂的作用方式和几种典型的氯代有机污染物的机械化学降解路径,其中包括六氯苯、多氯联苯、五氯酚、滴滴涕、得克隆和多氯萘。最后,针对当前机械化学法降解氯代有机污染物的研究现状,简述了有待解决的问题并展望了未来的发展方向,以期推进机械化学法降解理论的深入研究和技术的广泛应用。
中图分类号:
张振国, 刘希涛, 赖玲, 冯秀娟. 机械化学法降解氯代有机污染物的研究进展[J]. 化工进展, 2021, 40(1): 487-504.
Zhenguo ZHANG, Xitao LIU, Ling LAI, Xiujuan FENG. Progress in degradation of chlorinated organic pollutants by mechanochemical method[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 487-504.
污染物 | 最优添加剂 | 球磨设备 | 球磨条件 | 降解 效果 | 对比研究的添加剂 | 参考文献 |
---|---|---|---|---|---|---|
土壤中HCB | Al | 行星球磨机,QM-3SP2,南京南大仪器,中国 | R=0.01,CR=30, ω=550r/min,t=3.5h | 99.67% | — | [ |
DDT | Fe-Zn | 行星球磨机,PM-400,Retsch,德国 | R=10,CR=35, ω=350r/min,t=1h | 98% | Fe/Zn/CaO | [ |
PCNB | Fe | 行星球磨机,QM-3SP2,南京南大仪器,中国 | R=15,CR=36,ω=550r/min, t=4h,N2 | 约100% | — | [ |
氯苯 | CaH2 | 振动球磨机,8000,SPEX,美国 | Ca∶Cl=15∶1,CR=1.6, ω=875r/min,t=12h | >95% | CaO/MgO(H2) | [ |
HCB | CaC2 | 行星球磨机,QXQM-2,长沙天创,中国 | R=4.5,磨球总质量250g, ω=600r/min,t=12h | 92.4%② | CaO/NaOH/CaH2 | [ |
土壤中PCBs | LiAlH4 | 振动杯式球磨机,Pulverisette 9,Fritsch,德国 | R=0.05,t=3h,ω=750~1000r/min | 99.9% | NaBH4 | [ |
一氯联苯 | La2O3 | 行星球磨机,Pulverisette-7,Fritsch,德国 | R=0.05,CR=14.56①, ω=700r/min,t=6h | 100% | MgO/Mg(OH)2/Al2O3/ Al(OH)3/La(OH)3 | [ |
PCP | MnO2 (水钠锰矿) | 行星球磨机,Pulverisette-7,Fritsch,德国 | R=20,CR=7①, ω=700r/min,t=1h | 约100% | — | [ |
DP | CaO | 行星球磨机,QM-3SP2,南京南大仪器,中国 | R=25,CR=36, ω=550r/min,t=4h | 100% 88.6%② | — | [ |
PCNs | CaO | 行星球磨机,Pulverisette-7,Fritsch,德国 | R=57,CR=24①, Ω=700r/min,t=1h | >99.9% 85%② | — | [ |
土壤中PCB47 | PDS-Co2+ | 行星球磨机,QM-3SP2,南京南大仪器,中国 | PMS∶Co2+=50,R=12, CR=20,ω=350r/min,t=2h | 93.79% | PDS/PMS/PDS-Fe/ PDS-NaOH | [ |
PCNB | Fe-Ni-SiO2 | 行星球磨机,QM-3SP2,南京南大仪器,中国 | R=24,CR=36, ω=550r/min,t=2h | 94.49% | Fe/Fe-SiO2/Fe-Ni | [ |
灭蚁灵 | Fe-SiO2 | 行星球磨机,QM-3SP2,南京南大仪器,中国 | R=24,CR=36, ω=550 r/min,t=2h | 100% 90.7② | Fe/CaO/SiO2/CaO-SiO2 | [ |
水洗飞灰中PCDD/Fs | Al-SiO2 | 全方位行星球磨机,QXQM-2,长沙天创,中国 | R=0.1,CR=15, ω=300r/min,t=10h | 80.7% | SiO2-Fe/SiO2-Mg/MnO2 | [ |
BP-Cl | CaO-SiO2 | 行星球磨机,Pulverisette-7,Fritsch,德国 | R=20,CR=18.84①, ω=700r/min,t=6h | 99.5% | CaO | [ |
土壤中PCB | CaO-SiO2 | 水平球磨机,中试规模 | R=3,CR=1, ω=400r/min,t=20h | 74% | CaO | [ |
HCE | Fe-Fe3O4 | 行星球磨机,Pulverisette-7,Fritsch,德国 | Fe∶Fe3O4=3/7,R=13.5,CR=20,ω=600r/min,t=2h | 99.4%② | Fe/Fe3O4/Fe-SiO2/ Al-Al2O3/Mg-Al2O3 | [ |
γ-HCH | Al-CaO | 全方位行星球磨机,QXQM-2,长沙天创,中国 | CaO∶Al=7.99,R=14.65,CR=15,ω=275r/min,t=8h | 99.71% | CaO/CaO-SiO2/CaO-Al2O3 | [ |
水洗飞灰中PCDD/Fs | Ca-CaO | 行星球磨机,PM-100,Retsch,德国 | CaO∶Ca=1,R=0.001,CR=8.36①,ω=400r/min,t=20h | 100% | CaO/Ca/Al | [ |
HCB | SiC | 行星球磨机,DECO-PMB-V-2L,长沙德科,中国 | R=5,CR=90, ω=350r/min,t=50min | 99% | Al-Al2O3/CaO/Fe/Fe-SiO2 | [ |
土壤中DDT | Fe-Zn | 行星球磨机,PM-400,Retsch,德国 | R=10,CR=35, ω=250r/min,t=4h | 96.7% 91%② | CaO/Fe2O3 | [ |
表1 机械化学法对部分氯代有机污染物的相对最优球磨条件和降解效果
污染物 | 最优添加剂 | 球磨设备 | 球磨条件 | 降解 效果 | 对比研究的添加剂 | 参考文献 |
---|---|---|---|---|---|---|
土壤中HCB | Al | 行星球磨机,QM-3SP2,南京南大仪器,中国 | R=0.01,CR=30, ω=550r/min,t=3.5h | 99.67% | — | [ |
DDT | Fe-Zn | 行星球磨机,PM-400,Retsch,德国 | R=10,CR=35, ω=350r/min,t=1h | 98% | Fe/Zn/CaO | [ |
PCNB | Fe | 行星球磨机,QM-3SP2,南京南大仪器,中国 | R=15,CR=36,ω=550r/min, t=4h,N2 | 约100% | — | [ |
氯苯 | CaH2 | 振动球磨机,8000,SPEX,美国 | Ca∶Cl=15∶1,CR=1.6, ω=875r/min,t=12h | >95% | CaO/MgO(H2) | [ |
HCB | CaC2 | 行星球磨机,QXQM-2,长沙天创,中国 | R=4.5,磨球总质量250g, ω=600r/min,t=12h | 92.4%② | CaO/NaOH/CaH2 | [ |
土壤中PCBs | LiAlH4 | 振动杯式球磨机,Pulverisette 9,Fritsch,德国 | R=0.05,t=3h,ω=750~1000r/min | 99.9% | NaBH4 | [ |
一氯联苯 | La2O3 | 行星球磨机,Pulverisette-7,Fritsch,德国 | R=0.05,CR=14.56①, ω=700r/min,t=6h | 100% | MgO/Mg(OH)2/Al2O3/ Al(OH)3/La(OH)3 | [ |
PCP | MnO2 (水钠锰矿) | 行星球磨机,Pulverisette-7,Fritsch,德国 | R=20,CR=7①, ω=700r/min,t=1h | 约100% | — | [ |
DP | CaO | 行星球磨机,QM-3SP2,南京南大仪器,中国 | R=25,CR=36, ω=550r/min,t=4h | 100% 88.6%② | — | [ |
PCNs | CaO | 行星球磨机,Pulverisette-7,Fritsch,德国 | R=57,CR=24①, Ω=700r/min,t=1h | >99.9% 85%② | — | [ |
土壤中PCB47 | PDS-Co2+ | 行星球磨机,QM-3SP2,南京南大仪器,中国 | PMS∶Co2+=50,R=12, CR=20,ω=350r/min,t=2h | 93.79% | PDS/PMS/PDS-Fe/ PDS-NaOH | [ |
PCNB | Fe-Ni-SiO2 | 行星球磨机,QM-3SP2,南京南大仪器,中国 | R=24,CR=36, ω=550r/min,t=2h | 94.49% | Fe/Fe-SiO2/Fe-Ni | [ |
灭蚁灵 | Fe-SiO2 | 行星球磨机,QM-3SP2,南京南大仪器,中国 | R=24,CR=36, ω=550 r/min,t=2h | 100% 90.7② | Fe/CaO/SiO2/CaO-SiO2 | [ |
水洗飞灰中PCDD/Fs | Al-SiO2 | 全方位行星球磨机,QXQM-2,长沙天创,中国 | R=0.1,CR=15, ω=300r/min,t=10h | 80.7% | SiO2-Fe/SiO2-Mg/MnO2 | [ |
BP-Cl | CaO-SiO2 | 行星球磨机,Pulverisette-7,Fritsch,德国 | R=20,CR=18.84①, ω=700r/min,t=6h | 99.5% | CaO | [ |
土壤中PCB | CaO-SiO2 | 水平球磨机,中试规模 | R=3,CR=1, ω=400r/min,t=20h | 74% | CaO | [ |
HCE | Fe-Fe3O4 | 行星球磨机,Pulverisette-7,Fritsch,德国 | Fe∶Fe3O4=3/7,R=13.5,CR=20,ω=600r/min,t=2h | 99.4%② | Fe/Fe3O4/Fe-SiO2/ Al-Al2O3/Mg-Al2O3 | [ |
γ-HCH | Al-CaO | 全方位行星球磨机,QXQM-2,长沙天创,中国 | CaO∶Al=7.99,R=14.65,CR=15,ω=275r/min,t=8h | 99.71% | CaO/CaO-SiO2/CaO-Al2O3 | [ |
水洗飞灰中PCDD/Fs | Ca-CaO | 行星球磨机,PM-100,Retsch,德国 | CaO∶Ca=1,R=0.001,CR=8.36①,ω=400r/min,t=20h | 100% | CaO/Ca/Al | [ |
HCB | SiC | 行星球磨机,DECO-PMB-V-2L,长沙德科,中国 | R=5,CR=90, ω=350r/min,t=50min | 99% | Al-Al2O3/CaO/Fe/Fe-SiO2 | [ |
土壤中DDT | Fe-Zn | 行星球磨机,PM-400,Retsch,德国 | R=10,CR=35, ω=250r/min,t=4h | 96.7% 91%② | CaO/Fe2O3 | [ |
材质 | 密度/g?cm-3 | 弹性模量/GPa | 莫氏硬度 | E | 文献统计 |
---|---|---|---|---|---|
不锈钢 | 8 | 200 | 5.5 | 15.2 | [ |
氧化锆 | 5.89 | 190 | >7 | 11.8 | [ |
玛瑙(SiO2) | 2.65 | 70 | 7 | 5.10 | [ |
氧化铝(Al2O3) | 3.9 | 350 | 9.2 | 9.59 | [ |
硬质合金(碳化钨) | 15 | 710 | 8.5~9 | 32.4 | — |
碳化硅 | 3 | 400 | 9.5 | 7.98 | — |
氮化硅 | 3.25 | 300 | 9~9.5 | 8.03 | — |
表2 部分磨球材质的物理特性
材质 | 密度/g?cm-3 | 弹性模量/GPa | 莫氏硬度 | E | 文献统计 |
---|---|---|---|---|---|
不锈钢 | 8 | 200 | 5.5 | 15.2 | [ |
氧化锆 | 5.89 | 190 | >7 | 11.8 | [ |
玛瑙(SiO2) | 2.65 | 70 | 7 | 5.10 | [ |
氧化铝(Al2O3) | 3.9 | 350 | 9.2 | 9.59 | [ |
硬质合金(碳化钨) | 15 | 710 | 8.5~9 | 32.4 | — |
碳化硅 | 3 | 400 | 9.5 | 7.98 | — |
氮化硅 | 3.25 | 300 | 9~9.5 | 8.03 | — |
1 | MATSUKAMI H, KAJIWARA N. Destruction behavior of short- and medium-chain chlorinated paraffins in solid waste at a pilot-scale incinerator[J]. Chemosphere, 2019, 230: 164-172. |
2 | KARSTENSEN K H, KINH N K, THANG L B, et al. Environmentally sound destruction of obsolete pesticides in developing countries using cement kilns[J]. Environmental Science & Policy, 2006, 9(6): 577-586. |
3 | REDDY P V L, KIM Ki Hyun. A review of photochemical approaches for the treatment of a wide range of pesticides[J]. Journal of Hazardous Materials, 2015, 285: 325-335. |
4 | 张峰振, 吴超飞, 胡芸, 等. 卤代有机污染物的光化学降解[J]. 化学进展, 2014, 26(6): 1079-1098. |
ZHANG Fengzhen, WU Chaofei, HU Yun, et al. Photochemical degradation of halogenated organic contaminants[J]. Progress in Chemistry, 2014, 26(6): 1079-1098. | |
5 | WU Beizen, CHEN Guanyu, Hwakwang YAK, et al. Degradation of lindane and hexachlorobenzene in supercritical carbon dioxide using palladium nanoparticles stabilized in microcellular high-density polyethylene[J]. Chemosphere, 2016, 152: 345-352. |
6 | ZHANG Hao, MA Danyan, QIU Rongliang, et al. Non-thermal plasma technology for organic contaminated soil remediation: a review[J]. Chemical Engineering Journal, 2017, 313: 157-170. |
7 | 任咏. 滑动弧等离子体降解二英类有机污染物的基础研究[D]. 杭州: 浙江大学, 2015. |
REN Yong. Fundamental research of dioxins like organic pollutants degradation by gliding arc plasma[D]. Hangzhou: Zhejiang University, 2015. | |
8 | GAUR N, NARASIMHULU K, PYDISETTY Y. Recent advances in the bio-remediation of persistent organic pollutants and its effect on environment[J]. Journal of Cleaner Production, 2018, 198: 1602-1631. |
9 | JIANG Longfei, LUO Chunling, ZHANG Dayi, et al. Biphenyl-metabolizing microbial community and a functional operon revealed in E-waste-contaminated soil[J]. Environmental Science & Technology, 2018, 52(15): 8558-8567. |
10 | MORILLO E, VILLAVERDE J. Advanced technologies for the remediation of pesticide-contaminated soils[J]. Science of the Total Environment, 2017, 586: 576-597. |
11 | RANI M, SHANKER U, JASSAL V. Recent strategies for removal and degradation of persistent & toxic organochlorine pesticides using nanoparticles: a review[J]. Journal of Environmental Management, 2017, 190: 208-222. |
12 | CAGNETTA G, ROBERTSON J, HUANG Jun, et al. Mechanochemical destruction of halogenated organic pollutants: a critical review[J]. Journal of Hazardous Materials, 2016, 313: 85-102. |
13 | CAGNETTA G, HUANG Jun, YU Gang. A mini-review on mechanochemical treatment of contaminated soil: from laboratory to large-scale[J]. Critical Reviews in Environmental Science and Technology, 2018, 48(7/8/9): 723-771. |
14 | BALAZ P, ACHIMOVICOVA M, BALAZ M, et al. Hallmarks of mechanochemistry: from nanoparticles to technology[J]. Chemical Society Reviews, 2013, 42(18): 7571-7637. |
15 | ROWLANDS S A, HALL A K, MCCORMICK P G, et al. Destruction of toxic materials[J]. Nature, 1994, 367(6460): 223-223. |
16 | 陈鼎, 陈振华. 机械力化学[M]. 北京: 化学工业出版社, 2008: 42-104. |
CHEN Ding, CHEN Zhenhua. Mechanochemistry[M]. Beijing: Chemical Industry Press, 2008: 42-104. | |
17 | 杨华明. 材料机械化学[M]. 北京: 科学出版社, 2010: 2-4. |
YANG Huaming. Mechanochemistry of materials[M]. Beijing: Science Press, 2010: 2-4. | |
18 | MONAGHEDDU M, DOPPIU S, COCCO G. MSR reduction of hexachlorobenzene[J]. Journal of Materials Synthesis and Processing, 2000, 8(5/6): 295-300. |
19 | DENG Shanshan, FENG Nannan, KANG Shaoguo, et al. Mechanochemical formation of chlorinated phenoxy radicals and their roles in the remediation of hexachlorobenzene contaminated soil[J]. Journal of Hazardous Materials, 2018, 352: 172-181. |
20 | Hong SUI, RONG Yuzhou, SONG Jing, et al. Mechanochemical destruction of DDTs with Fe-Zn bimetal in a high-energy planetary ball mill[J]. Journal of Hazardous Materials, 2018, 342: 201-209. |
21 | ZHANG Wang, HUANG Jun, XU Fuyuan, et al. Mechanochemical destruction of pentachloronitrobenzene with reactive iron powder[J]. Journal of Hazardous Materials, 2011, 198: 275-281. |
22 | In Wook NAH, HWANG Kyung-Yub, SHUL Yong-Gun. Effect of metal and glycol on mechanochemical dechlorination of polychlorinated biphenyls (PCBs)[J]. Chemosphere, 2008, 73(1): 138-141. |
23 | BIRKE V, MATTIK J, RUNNE D. Mechanochemical reductive dehalogenation of hazardous polyhalogenated contaminants[J]. Journal of Materials Science, 2004, 39(16/17): 5111-5116. |
24 | LOISELLE S, BRANCA M, MULAS G, et al. Selective mechanochemical dehalogenation of chlorobenzenes over calcium hydride[J]. Environmental Science & Technology, 1997, 31(1): 261-265. |
25 | LI Yingjie, LIU Qingnan, LI Wenfeng, et al. Efficient destruction of hexachlorobenzene by calcium carbide through mechanochemical reaction in a planetary ball mill[J]. Chemosphere, 2017, 166: 275-280. |
26 | ARESTA M, CARAMUSCIO P, DE STEFANO L, et al. Solid state dehalogenation of PCBs in contaminated soil using NaBH4[J]. Waste Management, 2003, 23(4): 315-319. |
27 | ARESTA M, DIBENEDETTO A, FRAGALE Co, et al. High-energy milling to decontaminate soils polluted by polychlorobiphenyls and atrazine[J]. Environmental Chemistry Letters, 2004, 2(1): 1-4. |
28 | TANAKA Y, ZHANG Q W, SAITO F, et al. Dependence of mechanochemically induced decomposition of mono-chlorobiphenyl on the occurrence of radicals[J]. Chemosphere, 2005, 60(7): 939-943. |
29 | PIZZIGALLO M D R, DI LEO P, ANCONA V, et al. Effect of aging on catalytic properties in mechanochemical degradation of pentachlorophenol by birnessite[J]. Chemosphere, 2011, 82(4): 627-634. |
30 | QIAO Weichuan, GE Xiuxiu, ZHANG Yunhao, et al. Degradation of endosulfan by high-energy ball milling with CaO: process and mechanism[J]. Environmental Science and Pollution Research, 2019, 26(26): 18541-18553. |
31 | HALL A K, HARROWFIELD J M, HART R J, et al. Mechanochemical reaction of DDT with calcium oxide[J]. Environmental Science & Technology, 1996, 30(12): 3401-3407. |
32 | TANAKA Y, ZHANG Qiwu, SAITO F. Mechanochemical dechlorination of trichlorobenzene on oxide surfaces[J]. Journal of Physical Chemistry B, 2003, 107(40): 11091-11097. |
33 | IKOMA T, ZHANG Q W, SAITO F, et al. Radicals in the mechanochemical dechlorination of hazardous organochlorine compounds using CaO nanoparticles[J]. Bulletin of the Chemical Society of Japan, 2001, 74(12): 2303-2309. |
34 | ZHANG Wang, HUANG Jun, YU Gang, et al. Mechanochemical destruction of dechlorane plus with calcium oxide[J]. Chemosphere, 2010, 81(3): 345-350. |
35 | NOMURA Y, FUJIWARA K, TERADA A, et al. Mechanochemical degradation of gamma-hexachlorocyclohexane by a planetary ball mill in the presence of CaO[J]. Chemosphere, 2012, 86(3): 228-234. |
36 | NOMURA Y, AONO S, ARINO T, et al. Degradation of polychlorinated naphthalene by mechanochemical treatment[J]. Chemosphere, 2013, 93(11): 2657-2661. |
37 | NOMURA Y, NAKAI S, HOSOMI M. Elucidation of degradation mechanism of dioxins during mechanochemical treatment[J]. Environmental Science & Technology, 2005, 39(10): 3799-3804. |
38 | PENG Zheng, DING Qiong, SUN Yangzhao, et al. Characterization of mechanochemical treated fly ash from a medical waste incinerator[J]. Journal of Environmental Sciences, 2010, 22(10): 1643-1648. |
39 | YAN Jianhua, PENG Zheng, LU Shengyong, et al. Degradation of PCDD/Fs by mechanochemical treatment of fly ash from medical waste incineration[J]. Journal of Hazardous Materials, 2007, 147(1/2): 652-657. |
40 | 范国璇. 过硫酸盐辅助机械化学法降解土壤中持久性有机污染物的研究[D]. 北京: 北京师范大学, 2019. |
FAN Guoxuan. Persulfate-assisted mechanochemical method for the degradation of persistent organic pollutants in soil[D]. Beijing: Beijing Normal University, 2019. | |
41 | 张晓慧. 过硫酸盐强化机械化学降解典型有机污染物的研究[D]. 北京: 北京师范大学, 2016. |
ZHANG Xiaohui. Study on persulfate-assisted mechanochemical degradation of typical organic pollutants[D]. Beijing: Beijing Normal University, 2016. | |
42 | HUANG Aizhen, ZHANG Zhimin, WANG Nan, et al. Green mechanochemical oxidative decomposition of powdery decabromodiphenyl ether with persulfate[J]. Journal of Hazardous Materials, 2016, 302: 158-165. |
43 | YAN Xue, LIU Xitao, QI Chengdu, et al. Disposal of hexabromocyclododecane (HBCD) by grinding assisted with sodium persulfate[J]. RSC Advances, 2017, 7(38): 23313-23318. |
44 | LIU Xitao, ZHANG Xiaohui, ZHANG Kunlun, et al. Sodium persulfate-assisted mechanochemical degradation of tetrabromobisphenol A: Efficacy, products and pathway[J]. Chemosphere, 2016, 150: 551-558. |
45 | WANG Nan, Hanging LYU, ZHOU Yuqi, et al. Complete defluorination and mineralization of perfluorooctanoic acid by a mechanochemical method using alumina and persulfate[J]. Environmental Science & Technology, 2019, 53(14): 8302-8313. |
46 | LIN Chenghan, SHIH Yang-hsin, MACFARLANE J. Amphiphilic compounds enhance the dechlorination of pentachlorophenol with Ni/Fe bimetallic nanoparticles[J]. Chemical Engineering Journal, 2015, 262: 59-67. |
47 | 隋红, 李海波, 宋静, 等. 高浓度DDTs污染土壤机械化学球磨试剂筛选[J]. 环境科学研究, 2015, 28(8): 52-58. |
Hong SUI, LI Haibo, SONG Jing, et al. Selection of milling reagents for mechanochemical degradation of high concentrations of DDTs in contaminated soil[J]. Research of Environmental Sciences, 2015, 28(8): 52-58. | |
48 | ZHANG Teng, HUANG Jun, ZHANG Wang, et al. Coupling the dechlorination of aqueous 4-CP with the mechanochemical destruction of solid PCNB using Fe-Ni-SiO2[J]. Journal of Hazardous Materials, 2013, 250/251: 175-180. |
49 | KAUPP G. Mechanochemistry: the varied applications of mechanical bond-breaking[J]. Crystengcomm, 2009, 11(3): 388-403. |
50 | YU Yunfei, HUANG Jun, ZHANG Wang, et al. Mechanochemical destruction of mirex co-ground with iron and quartz in a planetary ball mill[J]. Chemosphere, 2013, 90(5): 1729-1735. |
51 | ZHANG Wang, WANG Haizhu, HUANG Jun, et al. Acceleration and mechanistic studies of the mechanochemical dechlorination of HCB with iron powder and quartz sand[J]. Chemical Engineering Journal, 2014, 239: 185-191. |
52 | WANG Haizhu, HUANG Jun, ZHANG Kunlun, et al. Effects of zero-valent metals together with quartz sand on the mechanochemical destruction of dechlorane plus coground in a planetary ball mill[J]. Journal of Hazardous Materials, 2014, 264: 230-235. |
53 | CHEN Zhiliang, TANG Minghui, LU Shengyong, et al. Mechanochemical degradation of PCDD/Fs in fly ash within different milling systems[J]. Chemosphere, 2019, 223: 188-195. |
54 | CHEN Zhiliang, TANG Minghui, LU Shengyong, et al. Evolution of PCDD/F-signatures during mechanochemical degradation in municipal solid waste incineration filter ash[J]. Chemosphere, 2018, 208: 176-184. |
55 | ZHANG Qiwu, SAITO F, IKOMA T, et al. Effects of quartz addition on the mechanochemical dechlorination of chlorobiphenyl by using CaO[J]. Environmental Science & Technology, 2001, 35(24): 4933-4935. |
56 | CAGNETTA G, HASSAN M M, HUANG Jun, et al. Dioxins reformation and destruction in secondary copper smelting fly ash under ball milling[J]. Scientific Reports, 2016, 6: 22925. |
57 | LU Shengyong, HUANG Jianxin, PENG Zheng, et al. Ball milling 2,4,6-trichlorophenol with calcium oxide: dechlorination experiment and mechanism considerations[J]. Chemical Engineering Journal, 2012, 195/196: 62-68. |
58 | WANG Haizhu, HWANG Jisu, HUANG Jun, et al. Mechanochemical remediation of PCB contaminated soil[J]. Chemosphere, 2017, 168: 333-340. |
59 | 毛琼晶, 陆胜勇, 卫樱蕾, 等. 水平球磨机械化学法处置多氯联苯污染土壤的试验[J]. 环境化学, 2016, 35(4): 607-614. |
MAO Qiongjing, LU Shengyong, WEI Yinglei, et al. Mechanochemical decomposition of polychlorinated biphenyls contaminated soil using a horizontal ball mill[J]. Environmental Chemistry, 2016, 35(4): 607-614. | |
60 | XU Zhi, ZHANG Xiaoyu, FEI Qingzhi. Dechlorination of pentachlorophenol by grinding at low rotation speed in short time[J]. Chinese Journal of Chemical Engineering, 2015, 23(3): 578-582. |
61 | WEI Yinglei, YAN Jianhua, LU Shengyong, et al. Mechanochemical decomposition of pentachlorophenol by ball milling[J]. Journal of Environmental Sciences, 2009, 21(12): 1761-1768. |
62 | DENG Shanshan, KANG Shaoguo, FENG Nannan, et al. Mechanochemical mechanism of rapid dechlorination of hexachlorobenzene[J]. Journal of Hazardous Materials, 2017, 333: 116-127. |
63 | REN Yafeng, KANG Shaoguo, ZHU Jianxin. Mechanochemical degradation of hexachlorobenzene using Mg/Al2O3 as additive[J]. Journal of Material Cycles and Waste Management, 2015, 17(4): 607-615. |
64 | HU Jun, HUANG Zhiyong, YU Jianming. Highly-effective mechanochemical destruction of hexachloroethane and hexachlorobenzene with Fe/Fe3O4 mixture as a novel additive[J]. Science of the Total Environment, 2019, 659: 578-586. |
65 | CHEN Zhiliang, LU Shengyong, MAO Qiongjing, et al. Accelerating dechlorination using calcium oxide with the assistance of metallic aluminum in mechanochemical reaction[J]. Chemistry Letters, 2018, 47(1): 40-43. |
66 | CAGNETTA G, HUANG Jun, LU Mengnan, et al. Defect engineered oxides for enhanced mechanochemical destruction of halogenated organic pollutants[J]. Chemosphere, 2017, 184: 879-883. |
67 | CHEN Zhiliang, MAO Qiongjing, LU Shengyong, et al. Dioxins degradation and reformation during mechanochemical treatment[J]. Chemosphere, 2017, 180: 130-140. |
68 | MITOMA Y, MIYATA H, EGASHIRA N, et al. Mechanochemical degradation of chlorinated contaminants in fly ash with a calcium-based degradation reagent[J]. Chemosphere, 2011, 83(10): 1326-1330. |
69 | MALLAMPATI S R, MITOMA Y, OKUDA T, et al. Solidification and immobilization of heavy metals in soil using with nano-metallic Ca/CaO dispersion mixture[C]// Pirrone N. E3S Web of Conferences. Rome, Italy: EDP Sciences, 2013: 35002. |
70 | MALLAMPATI S R, MITOMA Y, OKUDA T, et al. Enhanced heavy metal immobilization in soil by grinding with addition of nanometallic Ca/CaO dispersion mixture[J]. Chemosphere, 2012, 89(6): 717-723. |
71 | DONG Yan, LI Yuzhong, ZHAO Cheng, et al. Mechanism of the rapid mechanochemical degradation of hexachlorobenzene with silicon carbide as an additive[J]. Journal of Hazardous Materials, 2019, 379: 120653. |
72 | 卫樱蕾, 严建华, 陆胜勇, 等. 钙基添加剂对机械化学法降解二英的影响[J]. 浙江大学学报(工学版), 2010, 44(5): 161-167. |
WEI Yinglei, YAN Jianhua, LU Shengyong, et al. Decomposition of PCDD/Fs by mechanochemical means with calcium-based additives[J]. Journal of Zhejiang University (Engineering Science), 2010, 44(5): 161-167. | |
73 | TONGAMP W, KANO J, ZHANG Qiwu, et al. Simultaneous treatment of PVC and oyster-shell wastes by mechanochemical means[J]. Waste Management, 2008, 28(3): 484-488. |
74 | SAEKI S, KANO J, SAITO J, et al. Effect of additives on dechlorination of PVC by mechanochemical treatment[J]. Journal of Material Cycles and Waste Management, 2001, 3: 20-23. |
75 | SONG Jing, GAO Xin, RONG Yuzhou, et al. Mechanism for degradation of dichlorodiphenyltrichloroethane by mechano-chemical ball milling with Fe-Zn bimetal[J]. Journal of Environmental Management, 2019, 247: 681-687. |
76 | MALLAMPATI S R, MITOMA Y, OKUDA T, et al. Simultaneous decontamination of cross-polluted soils with heavy metals and PCBs using a nano-metallic Ca/CaO dispersion mixture[J]. Environmental Science and Pollution Research International, 2014, 21(15): 9270-9277. |
77 | PIZZIGALLO M D R, NAPOLA A, SPAGNUOLO M, et al. Influence of inorganic soil components and humic substances on the mechanochemical removal of pentachlorophenol[J]. Journal of Materials Science, 2004, 39(16/17): 5455-5459. |
78 | 卫樱蕾. 机械化学法降解POPs试验及机理研究[D]. 杭州: 浙江大学, 2010. |
WEI Yinglei. Mechanism and experimental study on POPs degradation by mechanochemical method[D]. Hangzhou: Zhejiang University, 2010. | |
79 | 叶旭初. 大型卧式行星球磨机的基础研究与工业粉磨应用前景[J]. 矿山机械, 2015, 43(12): 5-9. |
YE Xuchu. Basic study and industrial pulverization application prospect of large horizontal planetary ball mill[J]. Mining & Processing Equipment, 2015, 43(12): 5-9. | |
80 | 叶旭初. 一种公转自转分开驱动的连续化生产卧式行星球磨机: CN201110128621.4[P]. 2011-08-17. |
YE Xuchu. A continuous production horizontal planetary ball mill driven by revolution and rotation separately: CN201110128621.4[P]. 2011-08-17. | |
81 | PRI-BAR I, JAMES B R. Mechanochemical, solvent free, palladium-catalyzed hydrodechlorination of chloroaromatic hydrocarbons[J]. Journal of Molecular Catalysis A: Chemical, 2007, 264(1/2): 135-139. |
82 | BUTYAGIN P Y, STRELETSKII A N. The kinetics and energy balance of mechanochemical transformations[J]. Physics of the Solid State, 2005, 47(5): 856-862. |
83 | LU Shengyong, MAO Qiongjing, PENG Zheng, et al. Simulation of ball motion and energy transfer in a planetary ball mill[J]. Chinese Physics B, 2012, 21(7): 078201. |
84 | CHEN Zhiliang, LU Shengyong, MAO Qiongjing, et al. Energy transfer and kinetics in mechanochemistry[J]. Environmental Science and Pollution Research, 2017, 24(31): 24562-24571. |
85 | WANG Haizhu, HUANG Jun, ZHANG Siyu, et al. Study of degradation mechanism of dechlorane plus by mechanochemical reaction with aluminum and quartz sand[J]. Chemical Engineering Journal, 2016, 292: 98-104. |
86 | 杨君友, 张同俊, 崔菎, 等. 球磨过程中的碰撞行为分析[J]. 金属学报, 1997, 33(4): 381-385. |
YANG Junyou, ZHANG Tongjun, CUI Kun, et al. Analysis of collision behavior during ball milling[J]. Acta Metallurgica Sinica, 1997, 33(4): 381-385. | |
87 | CHATTOPADHYAY P P, MANNA I, TALAPATRA S, et al. A mathematical analysis of milling mechanics in a planetary ball mill[J]. Materials Chemistry and Physics, 2001, 68(1/2/3): 85-94. |
88 | LE BRUN P, FROYEN L, DELAEY L. The modelling of the mechanical alloying process in a planetary ball mill: comparison between theory and in-situ observations[J]. Materials Science and Engineering: A, 1993, 161(1): 75-82. |
89 | 陈振华, 陈鼎. 机械合金化与固液反应球磨[M]. 北京: 化学工业出版社, 2006: 40. |
CHEN Zhenhua, CHEN Ding. Mechanical alloying and solid-liquid reactive ball milling[M]. Beijing: Chemical Industry Press, 2006: 40. | |
90 | BALLINGER T H, YATES J T. Interaction and catalytic decomposition of 1,1,1-trichloroethane on high surface area alumina: an infrared spectroscopic study[J]. Journal of Physical Chemistry, 1992, 96(3): 1417-1423. |
91 | ZHANG Lifei, ZHENG Minghui, ZHANG Bing, et al. Investigation of the decomposition mechanism of hexachlorobenzene on gamma-Al2O3[J]. Environmental Technology, 2012, 33(17): 1945-1951. |
92 | COELHO F D S, ARDISSON J D, MOURA F C C, et al. Potential application of highly reactive Fe(0)/Fe3O4 composites for the reduction of Cr() environmental contaminants[J]. Chemosphere, 2008, 71(1): 90-96. |
93 | SAMARA M, NASSER A, MINGELGRIN U. Mechanochemical removal of carbamazepine[J]. Chemosphere, 2016, 160: 266-272. |
94 | DI LEO P, PIZZIGALLO M D R, ANCONA V, et al. Mechanochemical degradation of pentachlorophenol onto birnessite[J]. Journal of Hazardous Materials, 2013, 244/245: 303-310. |
95 | BIRKE V, SCHUETT C, BURMEIER H, et al. Defined mechanochemical reductive dechlorination of 1,3,5-trichlorobenzene at room temperature in a ball mill[J]. Fresenius Environmental Bulletin, 2011, 20(10A): 2794-2805. |
96 | KOSOBUDSKII I D, GVOZDEV G A, FEDOROV F S, et al. Mechanochemical activation of sand in the AGO-2 centrifugal-planetary mill[J]. Glass and Ceramics, 2015, 72(5/6): 199-202. |
97 | HASEGAWA M, OGATA T, SATO M. Mechano-radicals produced from ground quartz and quartz glass[J]. Powder Technology, 1995, 85(3): 269-274. |
98 | JESIONOWSKI T, KRYSZTAFKIEWICZ A. Influence of silane coupling agents on surface properties of precipitated silicas[J]. Applied Surface Science, 2001, 172(1/2): 18-32. |
99 | YAMADA S, NAITO Y, TAKADA M, et al. Photodegradation of hexachlorobenzene and theoretical prediction of its degradation pathways using quantum chemical calculation[J]. Chemosphere, 2008, 70(4): 731-736. |
100 | TAKACS L. Self-sustaining reactions induced by ball milling[J]. Progress in Materials Science, 2002, 47(4): 355-414. |
101 | 赵彦辉, 芦会杰, 徐文, 等. Fe2O3微纳米材料对八氯萘的热催化降解及其机制研究[J]. 环境化学, 2015, 34(12): 2204-2212. |
ZHAO Yanhui, LU Huijie, XU Wen, et al. Catalytic thermal degradation of octachloronaphthalene over Fe2O3 micro/nanomaterial and its explored mechanism[J]. Environmental Chemistry, 2015, 34(12): 2204-2212. |
[1] | 葛全倩, 徐迈, 梁铣, 王凤武. MOFs材料在光电催化领域应用的研究进展[J]. 化工进展, 2023, 42(9): 4692-4705. |
[2] | 向硕, 卢鹏, 石伟年, 杨鑫, 何燕, 朱立业, 孔祥微. 二维WS2纳米片的规模化可控制备及其摩擦学性能[J]. 化工进展, 2023, 42(9): 4783-4790. |
[3] | 杨静, 李博, 李文军, 刘晓娜, 汤刘元, 刘月, 钱天伟. 焦化污染场地中萘降解菌的分离及降解特性[J]. 化工进展, 2023, 42(8): 4351-4361. |
[4] | 储甜甜, 刘润竹, 杜高华, 马嘉浩, 张孝阿, 王成忠, 张军营. 有机胍催化脱氢型RTV硅橡胶的制备和可降解性能[J]. 化工进展, 2023, 42(7): 3664-3673. |
[5] | 徐伟, 李凯军, 宋林烨, 张兴惠, 姚舜华. 光催化及其协同电化学降解VOCs的研究进展[J]. 化工进展, 2023, 42(7): 3520-3531. |
[6] | 龚鹏程, 严群, 陈锦富, 温俊宇, 苏晓洁. 铁酸钴复合碳纳米管活化过硫酸盐降解铬黑T的性能及机理[J]. 化工进展, 2023, 42(7): 3572-3581. |
[7] | 吴锋振, 刘志炜, 谢文杰, 游雅婷, 赖柔琼, 陈燕丹, 林冠烽, 卢贝丽. 生物质基铁/氮共掺杂多孔炭的制备及其活化过一硫酸盐催化降解罗丹明B[J]. 化工进展, 2023, 42(6): 3292-3301. |
[8] | 杨红梅, 高涛, 鱼涛, 屈撑囤, 高家朋. 高铁酸盐处理难降解有机物磺化酚醛树脂[J]. 化工进展, 2023, 42(6): 3302-3308. |
[9] | 吕学东, 罗发亮, 林海涛, 宋丹青, 刘义, 牛瑞雪, 郑柳春. 聚丁二酸丁二醇酯的合成工艺及气体阻隔性最新进展[J]. 化工进展, 2023, 42(5): 2546-2554. |
[10] | 蔡举艳, 苏琼, 王彦斌, 王鸿灵, 梁俊玺, 王忠旭, 郭丽, 赵利斌. 可生物降解泡沫材料的研究进展[J]. 化工进展, 2023, 42(3): 1457-1470. |
[11] | 李光文, 华渠成, 黄作鑫, 达志坚. 聚甲基丙烯酸酯类黏度指数改进剂的研究进展[J]. 化工进展, 2023, 42(3): 1562-1571. |
[12] | 多佳, 姚国栋, 王英霁, 曾旭, 金滨滨. 改性Au-TiO2光降解废水中诺氟沙星的影响[J]. 化工进展, 2023, 42(2): 624-630. |
[13] | 杨凯璐, 陈明星, 王新亚, 张威, 肖长发. 染料废水处理用纳滤膜制备及改性研究进展[J]. 化工进展, 2023, 42(10): 5470-5486. |
[14] | 章萍萍, 丁书海, 高晶晶, 赵敏, 俞海祥, 刘玥宏, 谷麟. 碳量子点修饰半导体复合光催化剂降解水中有机污染物[J]. 化工进展, 2023, 42(10): 5487-5500. |
[15] | 张大洲, 卢文新, 商宽祥, 胡媛, 朱凡, 张宗飞. 草酸二甲酯加氢制乙醇酸甲酯反应网络分析及其多相加氢催化剂研究进展[J]. 化工进展, 2023, 42(1): 204-214. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |