1 | GIACOMO M, GIORGIO P, MORRITZ H, et al. Environmental and economical perspectives, of a glycerol biorefinery[J]. Energy Environ. Sci., 2018, 11(5): 1012-1029. | 2 | BEERTHUIS R, ROTHENBERG G, SHIJU N. Catalytic routes towards acrylic acid, adipic acid and ε-caprolactam starting from biorenewables[J]. Green Chem., 2015, 17(3): 1341-1361. | 3 | SUN D, YAMADA Y, SATO S, et al. Glycerol as a potential renewable raw material for acrylic acid production[J]. Green Chem., 2017, 19(14): 3186-3213. | 4 | KATRIN B, CHIU M, WATSON D, et al. Chemoselective catalytic hydrogenation of acrolein on Ag(111): effect of molecular orientation on reaction selectivity[J]. J. Am. Chem. Soc., 2009, 131(47): 17286-17290. | 5 | YANG L, LI X, CHEN P, et al. Selective oxidation of glycerol in a base-free aqueous solution: a short review[J]. Chin. J. Catal., 2019,40(7): 1020-1034. | 6 | 孙启梅, 王崇辉, 王领民, 等. 生物柴油副产物粗甘油的综合利用[J]. 化工进展, 2017, 36(S1): 161-166. | 6 | SUN Qimei, WANG Chonghui, WANG Lingmin, et al. Integrated utilization of crude glycerol as a by-product of biodiesel production[J]. Chemical Industry and Engineering Progress, 2017, 36(S1): 161-166. | 7 | 王辉国, 汪宏宇, 罗国华, 等. 甘油氢解制备1,2-丙二醇催化剂的研究进展[J]. 化工进展, 2018, 37(6): 2214-2221. | 7 | WANG Huiguo, WANG Hongyu, LUO Guohua, et al. Research progress of catalyst in catalytic hydrogenolysis of glycerol to 1,2-propanediol[J]. Chemical Industry and Engineering Progress, 2018, 37(6): 2214-2221. | 8 | ARECO E, MARSDEN P, BERGMAN R, et al. An efficient didehydroxylation method for the biomass-derived polyols glycerol and erythritol, mechanistic studies of a formic acid-mediated deoxygenation[J]. Chem. Commun., 2009(23): 3357-3359. | 9 | KIM M, LEE H. Highly selective production of acrylic acid from glycerol via two steps using Au/CeO2 catalysts[J]. ACS Sustain. Chem. Eng., 2017, 5(12): 11371-11376. | 10 | LI X, ZHANG Y. Highly Efficient process for the onversion of glycerol to acrylic acid via gas phase catalytic oxidation of an allyl alcohol intermediate[J]. ACS Catal., 2015, 6(1): 143-150. | 11 | ZHANG Y, SUN F, ZHANG H, et al. Synthesis of nitriles from allyl alcohol derived from glycerol over a bimetallic catalyst Zn30Ru1.0/γ-Al2O3[J]. Ind. Eng. Chem. Res., 2018, 57(13): 4553-4561. | 12 | JIA R, ZHAO B, XUE W, et al. Production of high-purity allyl alcohol by the salting-out method from formic acid-mediated deoxydehydration of glycerol[J]. J. Chem. Eng. Data, 2018, 63(10): 3874-3880. | 13 | YI J, LIU S, ABU-OMAR M. Rhenium-catalyzed transfer hydrogenation and deoxygenation of biomass-derived polyols to small and useful organics[J]. ChemSusChem, 2012, 5(8): 1401-1404. | 14 | SHIRAMIZA M, TOSTE F. Deoxygenation of biomass-derived feedstocks: oxorhenium-catalyzed deoxydehydration of sugars and sugar alcohols[J]. Angew. Chem.: Int. Ed., 2012, 51(32): 8082-8086. | 15 | CANALE V, TOMUCCI L, BRESSAN M, et al. Deoxydehydration of glycerol to allyl alcohol catalyzed by rhenium derivatives[J]. Catal. Sci. Technol., 2014, 4(10): 3697-3704. | 16 | DETHLEFSEN J, FRISTRUP P. Rhenium-catalyzed deoxydehydration of diols and polyols[J]. ChemSusChem, 2015, 8(5): 767-775. | 17 | DETHLEFSEN J, LUPP D, OH B, et al. Molybdenum-catalyzed deoxydehydration of vicinal diols[J]. ChemSusChem, 2014, 7(2): 425-428. | 18 | DETHLEFSEN J, LUPP D, TESHOME A, et al. Molybdenum-catalyzed conversion of diols and biomass-derived polyols to alkenes using isopropyl alcohol as reductant and solvent[J]. ACS Catal., 2015, 5(6): 3638-3647. | 19 | PETERSEN A, NIELSEN L, DETHLEFSEN J. Vanadium-catalyzed deoxydehydration of glycerol without an external reductant[J]. ChemCatChem, 2018, 10(4): 769-778. | 20 | OTA N, TAMARU M, NAKAGAWA Y. et al. Hydrodeoxygenation of vicinal OH groups over heterogeneous rhenium catalyst promoted by palladium and ceria support[J]. Angew. Chem.: Int. Ed., 2015, 54(6): 1897-1900. | 21 | LENNART S, ELISABETH K, HUSN-UBAYDA I, et al. ReOx/TiO2: a recyclable solid catalyst for deoxydehydration[J]. ACS Catal., 2016, 6(2): 677-680. | 22 | TAZAWA S, OTA N, TAMARU M, et al. Deoxydehydration with molecular hydrogen over ceria-supported rhenium catalyst with gold promoter[J]. ACS Catal., 2016, 6(10): 6393-6397. | 23 | LIU Y, TUYSUZ H, JIA C, et al. From glycerol to allyl alcohol: iron oxide catalyzed dehydration and consecutive hydrogen transfer[J]. Chem. Commun., 2010, 46(8): 1238-1240. | 24 | YOSHIKAWA T, TAGO T, NAKAMURA A, et al. Investigation of reaction routes for direct conversion of glycerol over zirconia-iron oxide catalyst[J]. Res. Chem. Intermed., 2011, 37(9): 1247-1256. | 25 | KONAKA A, TAGO T, YOSHIKAWA T, et al. Conversion of biodiesel-derived crude glycerol into useful chemicals over a zirconia-iron oxide catalyst[J]. Ind. Eng. Chem. Res., 2013, 52(44): 15509-15515. | 26 | KONAKA A, TAGO T, YOSHIKAWA T, et al. Conversion of glycerol into allyl alcohol over potassium-supported zirconia-iron oxide catalyst[J]. Appl. Catal. B, 2014, 146(S1): 267-273. | 27 | SANCHEZ G, FRIGGIERI J, KEAST C, et al. The effect of catalyst modification on the conversion of glycerol to allyl alcohol[J]. Appl. Catal. B, 2014, 152: 117-128. | 28 | SANCHEZ G, DLUGOGORSKI B, KENNEDY E, et al. Zeolite-supported iron catalysts for allyl alcohol synthesis from glycerol[J]. Appl. Catal. A, 2016, 509: 130-142. | 29 | SANCHEZ G, FRIGGIERI J, ADESINA A, et al. Catalytic conversion of glycerol to allyl alcohol; effect of a sacrificial reductant on the product yield[J]. Catal. Sci. Technol., 2014, 4(9): 3090-3098. | 30 | LAN H, XIAO X, YUAN S L, et al. Synergistic effect of Mo-Fe bimetal oxides promoting catalytic conversion of glycerol to allyl alcohol[J]. Catal. Lett., 2017, 147(8): 2187-2199. | 31 | 兰海, 肖熙,袁善良,等. 无额外供氢体下负载型MoFeOx催化剂催化甘油制丙烯醇[J]. 物理化学学报, 2017, 33(11): 2301-2309. | 31 | LAN Hai, XIAO Xi, YUAN Shanliang, et al. MoFeOx-supported catalysts for the catalytic conversion of glycerol to allyl alcohol without external hydrogen donors[J].Acta Physico-Chimica Sinica, 2017, 33(11): 2301-2309. |
|