1 | Earth System Research Laboratory Global Monitoring Division, Monthly average mauna loa CO2 [EB/OL].[2019-09-27]. . | 2 | JADHAV S G, VAIDYA P D, BHANAGE B M, et al. Catalytic carbon dioxide hydrogenation to methanol: a review of recent studies[J]. Chemical Engineering Research and Design, 2014, 92(11): 2557-2567. | 3 | SAEIDI S, AMIN N A S, RAHIMPOUR M R. Hydrogenation of CO2 to value-added products—a review and potential future developments [J]. Journal of CO2 Utilization, 2014, 5: 66-81. | 4 | WANG W, WANG S, MA X, et al. Recent advances in catalytic hydrogenation of carbon dioxide[J]. Chem. Soc. Rev., 2011, 40(7): 3703-3727. | 5 | YANG H, ZHANG C, GAO P, et al. A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons[J]. Catalysis Science & Technology, 2017, 7(20): 4580-4598. | 6 | KURTZ M, BAUER N, B?SCHER C, et al. New synthetic routes to more active Cu/ZnO catalysts used for methanol synthesis[J]. Catalysis Letters, 2004, 92(1): 49-52. | 7 | FUJITANI T, NAKAMURA J. The effect of ZnO in methanol synthesis catalysts on Cu dispersion and the specific activity[J]. Catalysis Letters, 1998, 56(2): 119-124. | 8 | BEHRENS M. Meso- and nano-structuring of industrial Cu/ZnO/(Al2O3) catalysts[J]. Journal of Catalysis, 2009, 267(1): 24-29. | 9 | GRUNWALDT J D, MOLENBROEK A M, TOPS?E N Y, et al. In situ investigations of structural changes in Cu/ZnO catalysts[J]. Journal of Catalysis, 2000, 194(2): 452-460. | 10 | VAN D B R, PRIETO G, KORPERSHOEK G, et al. Structure sensitivity of Cu and CuZn catalysts relevant to industrial methanol synthesis [J]. Nature Communications, 2016, 7:13057. | 11 | SCHOTT V, OBERHOFER H, BIRKNER A, et al. Chemische aktivit?t von dünnen oxidschichten: starke tr?ger- wechselwirkungen ergeben eine neue ZnO-dünnfilmphase[J]. Angewandte Chemie, 2013, 125(45): 12143-12147. | 12 | LUNKENBEIN T, SCHUMANN J, BEHRENS M, et al. Formation of a ZnO overlayer in industrial Cu/ZnO/Al2O3 catalysts induced by strong metal-support interactions[J]. Angewandte Chemie International Edition, 2015, 54(15): 4544-4548. | 13 | HUANG C, WEN J, SUN Y, et al. CO2 hydrogenation to methanol over Cu/ZnO plate model catalyst: effects of reducing gas induced Cu nanoparticle morphology[J]. Chemical Engineering Journal, 2019, 374:221-230. | 14 | LIAO F, HUANG Y, GE J, et al. Morphology-dependent interactions of ZnO with Cu nanoparticles at the materials’ interface in selective hydrogenation of CO2 to CH3OH[J]. Angewandte Chemie International Edition, 2011, 50(9): 2162-2165. | 15 | LEI H, NIE R, WU G, et al. Hydrogenation of CO2 to CH3OH over Cu/ZnO catalysts with different ZnO morphology[J]. Fuel, 2015, 154:161-166. | 16 | GREELEY J P. Active site of an industrial catalyst[J]. Science, 2012, 336(6083): 810-811. | 17 | KATTEL S, RAMIREZ P J, CHEN J G, et al. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts[J]. Science, 2017, 355(6331): 1296-1299. | 18 | KOEPPEL R A, BAIKER A, WOKAUN A. Copper/zirconia catalysts for the synthesis of methanol from carbon dioxide: influence of preparation variables on structural and catalytic properties of catalysts[J]. Applied Catalysis A: General, 1992, 84(1): 77-102. | 19 | WANG Y H, GAO W G, WANG H, et al. Structure-activity relationships of Cu-ZrO2 catalysts for CO2 hydrogenation to methanol: interaction effects and reaction mechanism[J]. RSC Advances, 2017, 7(14): 8709-8717. | 20 | LIU J, SHI J, HE D, et al. Surface active structure of ultra-fine Cu/ZrO2 catalysts used for the CO2+H2 to methanol reaction[J]. Applied Catalysis A: General, 2001, 218(1): 113-119. | 21 | LIU X, BAI S, ZHUANG H, et al. Preparation of Cu/ZrO2 catalysts for methanol synthesis from CO2/H2[J]. Frontiers of Chemical Science and Engineering, 2012, 6(1): 47-52. | 22 | SAMSON K, ?LIWA M, SOCHA R P, et al. Influence of ZrO2 structure and copper electronic state on activity of Cu/ZrO2 catalysts in methanol synthesis from CO2[J]. ACS Catalysis, 2014, 4(10): 3730-3741. | 23 | NITTA Y, FUJIMATSU T, OKAMOTO Y, et al. Effect of starting salt on catalytic behaviour of Cu-ZrO2 catalysts in methanol synthesis from carbon dioxide[J]. Catalysis Letters, 1993, 17(1): 157-165. | 24 | TADA S, KAYAMORI S, HONMA T, et al. Design of interfacial sites between Cu and amorphous ZrO2 dedicated to CO2-to-methanol hydrogenation[J]. ACS Catalysis, 2018, 8(9): 7809-7819. | 25 | WU G, SUN Y, LI Y W, et al. The Nature of Cu/ZrO2 catalyst: experimental and theoretical studies[J]. Journal of Molecular Structure: THEOCHEM, 2003, 626(1): 287-293. | 26 | áGUILA G, GUERRERO S, ARAYA P. Influence of the crystalline structure of ZrO2 on the activity of Cu/ZrO2 catalysts on the water gas shift reaction[J]. Catalysis Communications, 2008, 9(15): 2550-2554. | 27 | RHODES M D, BELL A T. The effects of zirconia morphology on methanol synthesis from CO and H2 over Cu/ZrO2 catalysts: Part I. Steady-state studies[J]. Journal of Catalysis, 2005, 233(1): 198-209. | 28 | WITOON T, CHALORNGTHAM J, DUMRONGBUNDITKUL P, et al. CO2 hydrogenation to methanol over Cu/ZrO2 catalysts: effects of zirconia phases[J]. Chemical Engineering Journal, 2016, 293:327-336. | 29 | TADA S, KATAGIRI A, KIYOTA K, et al. Cu species incorporated into amorphous ZrO2 with high activity and selectivity in CO2-to-methanol hydrogenation[J]. The Journal of Physical Chemistry C, 2018, 122(10): 5430-5442. | 30 | FISHER I A, BELL A T. In-situ infrared study of methanol synthesis from H2/CO2 over Cu/SiO2 and Cu/ZrO2/SiO2[J]. Journal of Catalysis, 1997, 172(1): 222-237. | 31 | KATTEL S, YAN B, YANG Y, et al. Optimizing binding energies of key intermediates for CO2 hydrogenation to methanol over oxide-supported copper[J]. Journal of the American Chemical Society, 2016, 138(38): 12440-12450. | 32 | ORTELLI E E, WEIGEL J M, WOKAUN A. Methanol synthesis pathway over Cu/ZrO2 catalysts: a time-resolved DRIFT 13C-labelling experiment[J]. Catalysis Letters, 1998, 54(1): 41-48. | 33 | TANG Q L, HONG Q J, LIU Z P. CO2 fixation into methanol at Cu/ZrO2 interface from first principles kinetic Monte Carlo[J]. Journal of Catalysis, 2009, 263(1): 114-122. | 34 | HONG Q J, LIU Z P. Mechanism of CO2 hydrogenation over Cu/ZrO2(2?12) interface from first-principles kinetics Monte Carlo simulations[J]. Surface Science, 2010, 604(21): 1869-1876. | 35 | LARMIER K, LIAO W C, TADA S, et al. CO2-to-methanol hydrogenation on zirconia-supported copper nanoparticles: reaction intermediates and the role of the metal-support interface[J]. Angewandte Chemie International Edition, 2017, 56(9): 2318-2323. | 36 | GRACIANI J, MUDIYANSELAGE K, XU F, et al. Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2[J]. Science, 2014, 345(6196): 546. | 37 | SENANAYAKE S D, RAMIREZ P J, WALUYO I, et al. Hydrogenation of CO2 to methanol on CeOx/Cu(111) and ZnO/Cu(111) catalysts: role of the metal-oxide interface and importance of Ce3+ sites[J]. Journal of Physical Chemistry C, 2016, 120(3): 1778-1784. | 38 | GUO C, WEI S, ZHOU S, et al. Initial reduction of CO2 on Pd-, Ru-, and Cu-doped CeO2(111) surfaces: effects of surface modification on catalytic activity and selectivity[J]. ACS Appl Mater Interfaces, 2017, 9(31): 26107-26117. | 39 | CUI Y, DAI W L. Support morphology and crystal plane effect of Cu/CeO2 nanomaterial on the physicochemical and catalytic properties for carbonate hydrogenation[J]. Catalysis Science & Technology, 2016, 6(21): 7752-7762. | 40 | OUYANG B, TAN W, LIU B. Morphology effect of nanostructure ceria on the Cu/CeO2 catalysts for synthesis of methanol from CO2 hydrogenation[J]. Catalysis Communications, 2017, 95:36-39. | 41 | BANDO K K, SAYAMA K, KUSAMA H, et al. In-situ FT-IR study on CO2 hydrogenation over Cu catalysts supported on SiO2, Al2O3, and TiO2[J]. Applied Catalysis A: General, 1997, 165(1): 391-409. | 42 | KIM M S, CHUNG S H, YOO C J, et al. Catalytic reduction of nitrate in water over Pd-Cu/TiO2 catalyst: effect of the strong metal-support interaction (SMSI) on the catalytic activity[J]. Applied Catalysis B: Environmental, 2013, 142/143:354-361. | 43 | BOCCUZZI F, CHIORINO A, MARTRA G, et al. Preparation, characterization, and activity of Cu/TiO2 catalysts. I. Influence of the preparation method on the dispersion of copper in Cu/TiO2[J]. Journal of Catalysis, 1997, 165(2): 129-139. | 44 | SCHLEXER P, CHEN H Y T, PACCHIONI G. CO2 activation and hydrogenation: a comparative DFT study of Ru10/TiO2 and Cu10/TiO2 model catalysts[J]. Catalysis Letters, 2017, 147(8): 1871-1881. | 45 | FERRAH D, HAINES A R, GALHENAGE R P, et al. Wet chemical growth and thermocatalytic activity of Cu-based nanoparticles supported on TiO2 nanoparticles/HOPG: in situ ambient pressure XPS study of the CO2 hydrogenation reaction[J]. ACS Catalysis, 2019, 9(8): 6783-6802. | 46 | BAO Y, HUANG C, CHEN L, et al. Highly efficient Cu/anatase TiO2 {001}-nanosheets catalysts for methanol synthesis from CO2[J]. Journal of Energy Chemistry, 2018, 27(2): 381-388. | 47 | LIU C, NAUERT S L, ALSINA M A, et al. Role of surface reconstruction on Cu/TiO2 nanotubes for CO2 conversion[J]. Applied Catalysis B: Environmental, 2019, 255:117754. | 48 | LIU X M, LU G Q, YAN Z F, et al. Recent advances in catalysts for methanol synthesis via hydrogenation of CO and CO2[J]. Industrial & Engineering Chemistry Research, 2003, 42(25): 6518-6130. | 49 | WANG Z Q, XU Z N, PENG S Y, et al. High-performance and long-lived Cu/SiO2 nanocatalyst for CO2 hydrogenation[J]. ACS Catalysis, 2015, 5(7): 4255-4259. | 50 | WANG Z Q, XU Z N, ZHANG M J, et al. Insight into composition evolution in the synthesis of high-performance Cu/SiO2 catalysts for CO2 hydrogenation[J]. RSC Advances, 2016, 6(30): 25185-25190. | 51 | WANG Y, KATTEL S, GAO W, et al. Exploring the ternary interactions in Cu-ZnO-ZrO2 catalysts for efficient CO2 hydrogenation to methanol[J]. Nature Communications, 2019, 10(1): 1166. | 52 | SHI Z, TAN Q, WU D. Ternary copper-cerium-zirconium mixed metal oxide catalyst for direct CO2 hydrogenation to methanol[J]. Materials Chemistry and Physics, 2018, 219: 263-272. | 53 | JIA L, GAO J, FANG W, et al. Carbon dioxide hydrogenation to methanol over the pre-reduced LaCr0.5Cu0.5O3 catalyst[J]. Catalysis Communications, 2009, 10(15): 2000-2003. | 54 | DING X, GAO X, ZHU W, et al. Electrode redox properties of Ba1-xLaxFeO3-δ as cobalt free cathode materials for intermediate-temperature SOFCs[J]. International Journal of Hydrogen Energy, 2014, 39(23): 12092-12100. | 55 | LIAW B J, CHEN Y Z. Liquid-phase synthesis of methanol from CO2/H2 over ultrafine CuB catalysts[J]. Applied Catalysis A: General, 2001, 206(2): 245-256. | 56 | BANSODE A, TIDONA B, VON R P R, et al. Impact of K and Ba promoters on CO2 hydrogenation over Cu/Al2O3 catalysts at high pressure[J]. Catalysis Science & Technology, 2013, 3(3): 767-778. | 57 | GUO X, MAO D, LU G, et al. The influence of La doping on the catalytic behavior of Cu/ZrO2 for methanol synthesis from CO2 hydrogenation[J]. Journal of Molecular Catalysis A: Chemical, 2011, 345(1): 60-68. | 58 | WIERZBICKI D, BARAN R, D?BEK R, et al. Examination of the influence of La promotion on Ni state in hydrotalcite-derived catalysts under CO2 methanation reaction conditions: operando X-ray absorption and emission spectroscopy investigation[J]. Applied Catalysis B: Environmental, 2018, 232: 409-419. | 59 | SONG Y, LIU X, XIAO L, et al. Pd-promoter/MCM-41: a highly effective bifunctional catalyst for conversion of carbon dioxide[J]. Catalysis Letters, 2015, 145(6): 1272-1280. | 60 | GUO X, MAO D, LU G, et al. Glycine-nitrate combustion synthesis of CuO-ZnO-ZrO2 catalysts for methanol synthesis from CO2 hydrogenation[J]. Journal of Catalysis, 2010, 271(2):178-185. | 61 | XIAO J, MAO D, WANG G, et al. CO2 hydrogenation to methanol over CuO-ZnO-TiO2-ZrO2 catalyst prepared by a facile solid-state route: the significant influence of assistant complexing agents[J]. International Journal of Hydrogen Energy, 2019, 44 (29):14831-14841. | 62 | BONURA G, CORDARO M, CANNILLA C, et al. The changing nature of the active site of Cu-Zn-Zr catalysts for the CO2 hydrogenation reaction to methanol[J]. Applied Catalysis B: Environmental, 2014, 152/153(1):152-161. | 63 | ZHANG L, ZHANG Y, CHEN S. Effect of promoter SiO2, TiO2 or SiO2-TiO2 on the performance of CuO-ZnO-Al2O3 catalyst for methanol synthesis from CO2 hydrogenation[J]. Applied Catalysis A: General, 2012, 415/416:118-123. | 64 | WANG W, QU Z, SONG L, et al. CO2 hydrogenation to methanol over Cu/CeO2 and Cu/ZrO2 catalysts: tuning methanol selectivity via metal-support interaction[J]. Journal of Energy Chemistry, 2020, 40: 22-30. | 65 | CHAO L, XIAO G, QIANG G, et al. Methanol synthesis from CO2 hydrogenation over copper catalysts supported on MgO-modified TiO2[J]. Journal of Molecular Catalysis A: Chemical, 2016, 425: 86-93. | 66 | ZHAN H, LI F, GAO P, et al. Methanol synthesis from CO2 hydrogenation over La-M-Cu-Zn-O (M=Y, Ce, Mg, Zr) catalysts derived from perovskite-type precursors[J]. Journal of Power Sources, 2014, 251: 113-121. |
|