1 | AYAR A Z, JI X X, JIE Y, et al. Thermal charging of supercapacitors: a perspective[J]. Sustainable Energy & Fuels, 2017, 1(7): 1457-1474. | 2 | BONETTII M, NAKAMAE S, HUANG B T, et al. Thermoelectric energy recovery at ionic-liquid electrode interface[J]. The Journal of Chemical Physics, 2015, 142(24): 244708. | 3 | HU R, COLA B A, HARAM N, et al. Harvesting waste thermal energy using a carbon-nanotube-based thermo-electrochemical cell[J]. Nano Letters, 2010, 10(3): 838-846. | 4 | 赵建云, 朱冬生, 周泽广, 等. 温差发电技术的研究进展及现状[J]. 电源技术, 2010, 34(3): 310-313. | 4 | ZHAO J Y, ZHU D S, ZHOU Z G, et al. Research progress of thermoelectric power generation[J]. Power Technology, 2010, 34(3): 310-313. | 5 | 陈建勇. 热电效应的应用及热电优值提高策略[J]. 物理通报, 2017, 36(8): 123-125. | 5 | CHEN J Y. Application of thermoelectric effect and thermoelectric figure optimization strategy[J]. Physical Bulletin, 2017, 36(8): 123-125. | 6 | 党斐, 赵炜, 陈曦, 等. 表面改性对活性炭孔结构及热电转换性能的影响[J]. 复合材料报, 2017, 34(5): 1069-1074. | 6 | DANG F, ZHAO W, CHEN X, et al. Effects of surface modification on the porous structure and thermal-electric energy conversion of activated carbon[J]. Acta Materiae Compositae Sinica, 2017, 34(5): 1069-1074. | 7 | HYUCK L, LU W Y, YU Q, et al. Dependence on cation size of thermally induced capacitive effect of a nanoporous carbon[J]. Physics Letters, 2012, 101(6): 063902. | 8 | ZHANG S P, CHEN T, XIONG Y Q, et al. Effects of wet torrefaction on the physicochemical properties and pyrolysis product properties of rice husk[J]. Energy Conversion and Management, 2017, 141: 403-409. | 9 | MAKELA M, FULLANA A, YOSHIKAWA K. Ash behavior during hydrothermal treatment for solid fuel applications.Part 1: Overview of different feedstock[J]. Energy Convers Manage, 2016, 121: 402-408. | 10 | ZHENG A Q, JIANG L Q, ZHAO Z L, et al. Effect of hydrothermal treatment on chemical structure and pyrolysis behavior of eucalyptus wood[J]. Energy & Fuels, 2016, 30(4): 3057-3065. | 11 | SMITH A M, ROSS A B. Production of bio-coal, bio-methane and fertilizer from seaweed via hydrothermal carbonisation[J]. Algal Research, 2016, 16: 1-11. | 12 | CATALKOPRU A K, KANTARLI I C, YANIK J. Effects of spent liquor recirculation in hydrothermal carbonization[J]. Bioresource Technology, 2016, 226: 89-93. | 13 | SHAN G, ZHOU J, LUO Z, et al. A detailed study of the effects of pyrolysis temperature and feedstock particle size on the preparation of nanosilica from rice husk[J]. Industrial Crops & Products, 2013, 50(4): 540-549. | 14 | XIAO L, ZHU X, LI X, et al. Effect of pressurized torrefaction pretreatments on biomass CO2 gasification[J]. Energy & Fuels, 2015, 29(11): 7309-7316. | 15 | 陈涛, 张书平, 李弯, 等. 酸洗-烘焙预处理对生物质热解产物的影响[J]. 化工进展, 2017, 36(2): 506-512. | 15 | CHEN T, ZHANG S P, LI W, et al. Effect of acid washing and torrefaction on pyrolysis products of biomass[J]. Chemical Industry and Engineering Progress, 2017, 36(2): 506-512. | 16 | HSIEH Y, DU Y X, JIN F M, et al. Alkaline pre-treatment of rice hulls for hydrothermal production of acetic acid[J]. Chemical Engineering Research & Design, 2009, 87(1): 13-18. | 17 | 陈雲, 高安江, 王蕾, 等. 基于TG-FTIR的水洗稻壳热解特性研究[J]. 广东化工, 2018, 45(15): 37-38. | 17 | CHEN Y, GAO A J, WANG L, et al. Research on the pyrolysis characteristics of washed rice husk based on TG-FTIR[J]. Guangdong Chemical Industry, 2018, 45(15): 37-38. | 18 | ZHANG S P, SU Y H, XU D, et al. Assessment of hydrothermal carbonization and coupling washing with torrefaction of bamboo sawdust for biofuels production[J]. Bioresource Technology, 2018, 258: 111-118. | 19 | REZA M T, LYNAM, JOAN G, et al. Hydrothermal carbonization: fate of inorganics[J]. Biomass & Bioenergy, 2013, 49(1): 86-94. | 20 | 高凯芳, 简敏菲, 余厚平, 等. 裂解温度对稻秆与稻壳制备生物炭表面官能团的影响[J]. 环境化学, 2016, 36(8): 1663-1669. | 20 | GAO K F, JIAN M F, YU H P, et al. Effects of pyrolysis temperatures on the biochars and its surface functional groups made from rice straw and rice husk[J]. Environmental Chemistry, 2016, 36(8): 1663-1669. | 21 | 吕娟, 王明峰, 蒋恩臣, 等. 不同热解温度下稻壳炭的理化特性分析[J]. 可再生能源, 2017, 35(10): 1448-1453. | 21 | LV J, WANG M F, JIANG E C, et al. Analysis on the physicochemical properties of the rice husk carbon produced at different pyrolysis temperature[J]. Renewable Energy Resources, 2017, 35(10): 1448-1453. | 22 | 张传涛, 邢宝林, 黄光许, 等. 水热炭化-KOH活化制备核桃壳活性炭电极材料的研究[J]. 材料导报, 2018, 32(4):1088-1093. | 22 | ZHNAG C T, XIN B L, HUANG G X, et al. Preparation of walnut shell activated carbons via combination of hydrothermal carbonization and KOH activation[J]. Materials Review, 2018, 32(4): 1088-1093. | 23 | 张丽华, 孙振平. 稻壳应用于建筑材料生产的相关问题探讨[J]. 粉煤灰, 2013(3): 18-21. | 23 | ZHANG L H, SUN Z P. Some issues on production of building materials with rice husk[J]. Coal Ash, 2013(3): 18-21. | 24 | 孙浩宇, 濮金欢, 唐桂华, 等. 基于纳米有机液体的高性能温差电池[J]. 物理化学学报, 2016, 32(10): 2555-2562. | 24 | SUN H Y, PU J H, TANG G H, et al. High-performance thermogalvanic cell based on organic nanofluids[J]. Acta Physico-Chimica Sinica, 2016, 32(10): 2555-2562. | 25 | LIM H, LU W, CHEN X, et al. Effects of ion concentration on thermally-chargeable double-layer supercapacitors[J]. Nanotechnology, 2013, 24(46): 465401. | 26 | LIM H, SHI Y, QIAO Y. Thermally chargeable supercapacitor based on nickel-coated nanoporous carbon[J]. International Journal of Green Energy, 2018: 15(2): 53-56. |
|