化工进展 ›› 2019, Vol. 38 ›› Issue (9): 4264-4274.DOI: 10.16085/j.issn.1000-6613.2019-0001
收稿日期:
2019-01-01
出版日期:
2019-09-05
发布日期:
2019-09-05
通讯作者:
杨双春
作者简介:
杨双春(1977—),女,教授,研究方向为油气田开发。E-mail:基金资助:
Shuangchun YANG1(),Shuangyu TONG1,Dongsheng LI2,Umed KHISAYNOV,Mingzhe GUO1,Minglei XU1
Received:
2019-01-01
Online:
2019-09-05
Published:
2019-09-05
Contact:
Shuangchun YANG
摘要:
低密度支撑剂是通过化学改性、物理改性等方法制备得到的高性能支撑剂,具有密度低、沉降速度低等特性。本文在调研大量文献基础上,根据改性方法不同将低密度支撑剂分为多孔无包覆陶瓷低密度支撑剂、多孔无机物包覆低密度支撑剂、多孔树脂包覆低密度支撑剂,对比了不同类型低密度支撑剂制备体系组成、密度以及承压性能,总结了制备不同类型低密度支撑剂的机理、主要影响因素及应用情况。根据制备方式不同将超低密度支撑剂(ultra-light weight proppants, ULWP)分为常规方法制备、新技术制备两类。提出未来可通过结合使用多种添加剂、优化烧制工艺等方式探索莫来石相、刚玉相等晶体结构,实现支撑剂超低密度与高强度的有效结合,利用疏水改性、结构改性等方式向多功能、高性能发展,为相关研究提供借鉴和参考。
中图分类号:
杨双春,佟双鱼,李东胜,郭明哲,徐明磊. 低密度支撑剂研究进展[J]. 化工进展, 2019, 38(9): 4264-4274.
Shuangchun YANG,Shuangyu TONG,Dongsheng LI,Umed KHISAYNOV,Mingzhe GUO,Minglei XU. Advances in low-density proppant research[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4264-4274.
1 | 周少鹏, 田玉明, 陈战考, 等. 陶粒压裂支撑剂研究现状及新进展[J]. 硅酸盐通报, 2013, 32(6): 1097-1102. |
ZHOUS P, TIANY M, CHENZ K, et al. Current research situation and new progress of ceramic fracturing proppants[J]. Bulletin of the Chinese Ceramic Society, 2013, 32(6): 1097-1102. | |
2 | IZGINM, WASTIY. Geomembrane sand interface frictional properties as determined by inclined board and shear box tests[J]. Geotextiles and Geomembranes, 1998,16(4): 207-219. |
3 | 贾旭楠. 支撑剂的研究现状及展望[J]. 石油化工应用, 2017(9):7-12. |
JIAX N. Overview of the proppant development and prospect[J]. Petrochemical Industry Application, 2017(9): 7-12. | |
4 | 岳俊磊. 超低密高强度压裂支撑剂的制备及性能研究[D]. 太原: 太原理工大学, 2017. |
YUEJ L. Preparation and properties of ultra-light weight and high strength fracturing proppant[D]. Taiyuan: Taiyuan University of Technology, 2017. | |
5 | RICKARDSA R, BRANNONH D, WOODW D. High strength, ultra-lightweight proppant lends new dimensions to hydraulic fracturing applications[J]. SPE Production & Operations, 2006, 21(2): 212-221. |
6 | 国家能源局. 水力压裂和砾石充填作业用支撑剂性能测试方法: SY/T 5108—2014[S]. 北京: 石油工业出版社, 2014. |
National Energy Administration. Measurement of properties of proppants used in hydraulic fracturing and gravel-packing operations: SY/T 5108—2014[S]. Beijing: Petroleum Industry Press, 2014. | |
7 | 柏雪. 添加剂对以铝矾土为主要原料的支撑剂的烧结性能影响[D]. 武汉: 武汉科技大学, 2012. |
BAIX. The influence of additives on sintering properties of the main raw bauxite of proppant[D]. Wuhan: Wuhan University of Science and Technology, 2012. | |
8 | 牟军, 薛屺, 董朋朋, 等. 铝矾土空心陶粒支撑剂的制备及性能研究[J]. 人工晶体学报, 2017, 46(7): 53-58. |
MOU J, XUEQ, DONGP P, et al. Preparation and performance of the hollow bauxite ceramic proppant[J]. Journal of Synthetic Crystals, 2017, 46(7): 53-58. | |
9 | 邓浩, 公衍生, 罗文君, 等. 低密度高强度覆膜陶粒支撑剂的制备与性能研究[J]. 硅酸盐通报, 2015, 34(5): 1193-1198. |
DENGH, GONGY S, LUOW J, et al. Study on the preparation and performance of low-density and high-strength coated ceramic proppants[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(5):1193-1198. | |
10 | 刘志敏, 马颖洁. 低密度支撑剂在Appalachian低渗砂岩气田的应用[J]. 国外油田工程, 2006, 22(1): 15-18. |
LIUZ M, MA Y J. Field application of new lightweight proppant in appalachian tight gas sandstones[J]. Foreign Oil Field Engineering, 2006, 22(1): 15-18. | |
11 | 任怀丰, 揣丽梅, 刘景基, 等. 低密度支撑剂可改善二叠纪盆地水力压裂的效果[J]. 石油石化节能, 2005, 21(1): 9-11. |
RENH F, CHUAIL M, LIUJ J, et al. Low-density propping agents improve hydraulic fracturing in the permian basin[J]. Energy Conservation in Petroleum & Petrochemical Industry, 2005, 21(1):9-11. | |
12 | 梁莹, 罗斌, 黄霞. 水力压裂低密度支撑剂铺置规律研究及应用[J]. 钻井液与完井液, 2018, 35(3): 110-113. |
LIANGY, LUOB, HUANGX. Study on distribution of low density proppants in hydraulic fracturing operations and the application thereof[J]. Drilling Fluid & Completion Fluid, 2018, 35(3): 110-113. | |
13 | 李树良. ULW-1.05超低密度支撑剂评价及应用[J]. 油气田地面工程, 2013(9): 66-67. |
LIS L. ULW-1.05 ultralow density proppant evaluation and application[J]. Oil-Gas Field Surface Engineering, 2013(9): 66-67. | |
14 | KENDRICKD E, PUSKARM P, SCHLOTTER BECKS T. Ultralight weight proppants: a field study in the big sandy field of eastern Kentucky[C]//SPE Eastern Regional Meeting. Morgantown, West Virginia: Society of Petroleum Engineers, 2005. |
15 | NETOJ, ABRAHAOT, PRATAF G M, et al. Ultralightweight proppants: an effective approach to address problems in long horizontal gravel packs offshore Brazil[J]. SPE Drilling & Completion, 2012, 27(4): 613-624. |
16 | GAURAVA, DAO E K, MOHANTYK K. Evaluation of ultra-light weight proppants for shale fracturing[J]. Journal of Petroleum Science and Engineering, 2012, 92/93: 82-88. |
17 | 中国石化集团胜利油田管理局. 压裂支撑剂性能指标及测定方法: Q/SH1020 1598—2008[S]. 2008. |
Sinopec Shengli Oilfield Administration Bureau. fracturing proppant performance indicators and measurement methods: Q/SH1020 1598—2008[S]. 2008. | |
18 | 贾新勇. 我国支撑剂的发展应用及现状[J]. 企业技术开发, 2011(19): 105-106. |
JIAX Y. The applications and agent status of propping agent in China[J]. Technological Development of Enterprise, 2011(19): 105-106. | |
19 | 李显文, 周克仁. 低密度陶粒-石油深井支撑剂填补国内空白[J]. 中国陶瓷, 1988(5): 62. |
LIX W, ZHOUK R. Low density ceramsite-a petroleum deep well proppant to fill the domestic gap[J]. Chinese Ceramics, 1988(5): 62. | |
20 | 董丙响, 蔡景超, 李世恒, 等. 新型低密度高强度水力压裂支撑剂的研制[J]. 钻井液与完井液, 2017, 34(2): 117-125. |
DONGB X, CAIJ C, LIS H. et al. Development of a new low density high strength hydraulic fracturing proppant[J]. Drilling Fluid & Completion Fluid, 2017, 34(2): 117-125. | |
21 | 吴尧鹏. 矿物添加剂对石油压裂支撑剂性能的影响[D]. 太原: 太原理工大学, 2013. |
WUR P. Influence of mineral additives on the properties of fracturing proppant[D]. Taiyuan: Taiyuan University of Technology, 2013. | |
22 | LUSCHERW G, HELLMANNJ R, SCHEETZB E, et al. Aluminosilicate aggregate through modified strength enhancement of thermal treatment[J]. International Journal of Applied Ceramic Technology, 2006, 3(2): 157-165. |
23 | CAOJ, DONGX, LIL, et al. Recycling of waste fly ash for production of porous mullite ceramic membrane supports with increased porosity[J]. Journal of the European Ceramic Society, 2014, 34(13): 3181-3194. |
24 | BAGCHIB, DAS S, BHATTACHARYAA, et al. Mullite phase enhancement in Indian Kaolin by addition of vanadium pentoxide[J]. Applied Clay Science, 2010, 47(3/4): 409-413. |
25 | KONGL B, HUANGH, ZHANGT S, et al. Growth of mullite whiskers in mechanochemically activated oxides doped with WO3[J]. Journal of the European Ceramic Society, 2003, 23(13): 2257-2264. |
26 | MITRAN K, MAITRAS, GNANABHARATHID, et al. Effect of Cr2O3 on the sintering of aluminosilicate precursor leading to mullite formation[J]. Ceramics International, 2001, 27(3): 277-282. |
27 | ILICS, ZEC S, MILJKOVICM, et al. Sol-gel synthesis and characterization of iron doped mullite[J]. Journal of Alloys and Compounds, 2014, 612: 259-264. |
28 | 崔冰峡. 高强度低密度压裂支撑剂的制备研究[D]. 太原: 太原理工大学, 2016. |
CUIB X. Research on preparation of high strength and low weight fracturing proppant[D]. Taiyuan: Taiyuan University of Technology, 2016. | |
29 | 马晓霞. 低密高强陶粒支撑剂的制备及性能研究[D]. 太原: 太原科技大学, 2016. |
MA X X. Research on the preparation and properties of low-density high-strength ceramic proppants[D]. Taiyuan: Taiyuan University of Science and Technology, 2016. | |
30 | 刘挺, 王菊侠, 曹义平, 等. 添加铁粉制备低密度中强度陶粒支撑剂及性能研究[J]. 陶瓷, 2017(1): 30-34. |
LIUT, WANGJ X, CAOY P,et al. Preparation and mechanisms of light-weight middle-strength ceramisite proppant by iron powder additive[J]. Ceramics, 2017(1): 30-34. | |
31 | 刘恩栋, 冯真, 王嫣云, 等. 页岩气水基钻屑制备低密度支撑剂及性能研究[J]. 安全与环境学报, 2018, 18(3): 1155-1159. |
LIUE D, FENGZ, WANGY Y, et al. On the preparation and performance of the proppants at low-density with the water-based drilling cuttings of shale gas[J]. Journal of Safety and Environment,2018, 18(3): 1155-1159. | |
32 | 王勇伟. 利用煤矸石制备陶粒支撑剂的研究[D]. 济南: 济南大学, 2016. |
WANGY W. The study of the preparation of ceramsite proppants using coal gangue[D]. Jinan: Jinan University, 2016. | |
33 | TIANX, WUB, LIJ. The exploration of making acidproof fracturing proppants using red mud[J]. Journal of Hazardous Materials, 2008, 160(2/3): 589-593. |
34 | 冯伟乐. 焦宝石煅烧特性及其制备陶粒支撑剂的研究[D]. 太原: 太原科技大学, 2016. |
FENGW L. Research on the characteristics of flint calcination and the preparation of ceramic proppant[D]. Taiyuan: Taiyuan University of Science and Technology, 2016. | |
35 | 王晋槐. 利用焦宝石和煤矸石制备低密度陶粒支撑剂的研究[D]. 济南: 山东大学, 2016. |
WANGJ H. Fabrication and research of low-density proppants using lint clay and coal gangue[D]. Jinan: Shandong University, 2016. | |
36 | 冯鑫, 郝建英, 左宏芳, 等. 烧结温度对添加锰粉的陶粒支撑剂性能的影响[J]. 山西建筑, 2018, 44(1): 87-88. |
FENGX, HAOJ Y, ZUOH F, et al. Effect of sintering temperature on property of ceramic proppants adding manganese powder[J]. Shanxi Architecture, 2018, 44(1): 87-88. | |
37 | 接金利,刘洪升,陈丽,等. 高压低渗油气藏GSB-1型压裂支撑剂研究与应用[J]. 钻井液与完井液,2004,21(2): 33-35. |
JIE J L, LIUH S. CHEN L, et al Study on GSB-1 fracturing proppant and its application in high pressure low permeability reservoir[J]. Drilling Fluid & Completion Fluid, 2004, 21(2): 33-35. | |
38 | 李丹丹. JG公司陶粒支撑剂项目可行性研究[D]. 济南: 齐鲁工业大学, 2017. |
LID D. Feasibility study of ceramic proppants project in JG company[D]. Jinan: Shandong Polytechnic University, 2017. | |
39 | 徐永驰. 低密度支撑剂的研制及性能评价[D]. 成都: 西南石油大学, 2016. |
XUY C. Development and performance evaluation of low weight proppant[D]. Chengdu: Southwest Petroleum University, 2016. | |
40 | MACKM G, COKERC. Development and field testing of advanced ceramic proppants[C]//SPE Annual Technical Conference. New Orleans, Louisiana, USA: Society of Petroleum Engineers, 2013. |
41 | 范承贵, 解发生, 马建民. 树脂涂层砂在压裂上的应用[J]. 石油钻采工艺, 1989, 11(3): 93-98. |
FANC G, XIEF S, MA J M. Resin coated sand for fracturing applications[J]. Oil Drilling & Production Technology, 1989, 11(3): 93-98. | |
42 | 韩小兵. 超低密度(ULW)支撑剂用改性聚苯乙烯(PS)微球的制备及性能研究[D]. 武汉: 华中师范大学, 2015. |
HANX B. Preparation and properties of modified polystyrene microspheres used as ultra-low density proppant[D]. Wuhan: Central China Normal University, 2015. | |
43 | 张伟民, 李宗田, 李庆松, 等. 高强度低密度树脂覆膜陶粒研究[J]. 油田化学, 2013, 30(2):189-192. |
ZHANGW M, LIZ T, LIQ S, et al. Study on the influence factors of surfactant flooding in high-temperature low-permeability reservoir[J]. Oilfield Chemistry, 2013, 30(2):189-192. | |
44 | 刘冰. 非金属矿制备低密度石油压裂支撑剂及其性能研究[D]. 信阳: 信阳师范学院, 2017. |
LIUB. Preparation and properties of low density oil fracturing proppant with non-metallic minerals[D]. Xinyang: Xinyang Normal University, 2017. | |
45 | GUM, DAO E, MOHANTYK K. Investigation of ultra-light weight proppant application in shale fracturing[J]. Fuel, 2015, 150: 191-201. |
46 | 郭宗艳, 姚晓, 马雪. 多孔莫来石基低密度高强度支撑剂的制备及性能[J]. 石油钻探技术, 2013, 41(2): 39-43. |
GUOZ Y, YAOX, MA X. Preparation and properties of porous mullite base low-density high-strength proppants[J]. Petroleum Drilling Techniques, 2013, 41(2): 39-43. | |
47 | 牟绍艳. 压裂用支撑剂相关改性技术研究[D]. 北京: 北京科技大学, 2017. |
MOU S Y. Research on technologies of fracturing proppants[D]. Beijing: University of Science and Technology Beijing, 2017. | |
48 | 黄勇. 低密度支撑剂用酚醛/环氧树脂复合材料的制备及其固化反应机理的研究[D]. 成都: 四川大学, 2007. |
HUANGY. Preparation of phenolic resin/epoxy resin composite as low density proppant and mechanism of its thermal curing[D]. Chengdu: Sichuan University, 2007. | |
49 | 严思明, 杨珅, 史素青, 等. 新型页岩气田压裂用低密度支撑剂的研制[J]. 广东化工, 2017, 44(11): 9-11. |
YANS M, YANGK, SHIS Q, et al. Exploration of making high-strength low-density proppant for shale fracturing[J]. Guangdong Chemical Industry, 2017, 44(11): 9-11. | |
50 | 陈一鑫. 一种新型自支撑压裂技术实验研究[D]. 成都: 西南石油大学, 2017. |
CHENY X. Experimental study on a new type of self-propping fracturing technology[D]. Chengdu: Southwest Petroleum University, 2017. | |
51 | HUSSAINH, MCDANIELR R, CALLANANM J, et al. Proppants with fiber reinforced resin coatings: US6528157B1[P]. 2003-03-04. |
52 | BORTOLANN L, KOTOUSOVA. Residual opening of hydraulic fractures filled with compressible proppant[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 61: 223-230. |
53 | 高旺来, 接金利, 张为民. 一种树脂覆膜砂支撑剂的研究及现场应用[J]. 油田化学, 2006, 23(1): 39-41. |
GAOW L, JIE J L, ZHANGW M. Development and application of new type resin coated sand proppant in hydraulic fracturing[J]. Oilfield Chemistry, 2006, 23(1): 39-41. | |
54 | RICKARDSA R, BRANNONH D, WOODW D, et al. High strength ultra-lightweight proppant lends new dimensions to hydraulic fracturing applications[C] //SPE Annual Technical Conference and Exhibition. Denver, Colorado: Society of Petroleum Engineers, 2003. |
55 | CHENZ M. The application of light and ultra-light weight proppant in horizontal well sand control: unified model and case histories[C]//SPE Deepwater Drilling and Completions Conference. Galveston, Texas, USA: Society of Petroleum Engineers, 2012. |
56 | LIANGF, SAYEDM, AL-MUNTASHERIG, et al. Overview of existing proppant technologies and challenges[C]// SPE Middle East Oil & Gas Show and Conference. Manama, Bahrain: Society of Petroleum Engineers, 2015. |
57 | 马睿, 暴峰, 高洁, 等. 一种离子交联改性超低密度支撑剂及其制备方法: CN201611256406[P]. 2017-05-31. |
MA R, BAOF, GAOJ, et al. The invention relates to an ion crosslinking modified ultra-low density proppant and a preparation method thereof: CN201611256406[P]. 2017-05-31. | |
58 | 熊鹰, 姚云, 王正力, 等. 一种超轻质覆膜支撑剂及其制备方法: CN201711208971[P] 2018-05-15. |
XIONGY, YAOY, WANGZ L, et al. The invention relates to an ultra-light coated proppant and a preparation method thereof: CN201711208971[P]. 2018-05-15. | |
59 | GAURAVA, DAO E K, MOHANTYK K. Ultra-lightweight proppants for shale gas fracturing[C]// Tight Gas Completions Conference. San Antonio, Texas, USA: Society of Petroleum Engineers, 2010. |
60 | 王珊珊. 吉林油田应用新型超低密度支撑剂[EB/OL]. [2017-04-07]. . |
WANG S S. New ultra-low density proppant is applied in Jilin oilfield. [EB/OL]. [2017-04-07]. . | |
61 | 候风岗. 超低密度支撑剂在煤层气井压裂中的应用[EB/OL]. [2013-01-11]. . |
HOUF G. Application of ultra-low density proppant in the fracturing of coalbed methane wells[EB/OL]. [2013-01-11]. . | |
62 | 王成旺, 陆红军. 常规压裂作业中一种新型超低密度支撑剂输送体系的开发[J]. 石油石化节能, 2008, 24(7): 12-16. |
WANGC W, LUH J. Development of a novel delivery system for ultralightweight proppants in conventional fracturing treatments[J]. Energy Conservation in Petroleum & Petrochemical Industry, 2008, 24(7): 12-16. | |
63 | 孙婉莹, 姚晓. 树脂包覆免烧超低密度支撑剂性能研究[J]. 硅酸盐通报, 2015, 34(10): 2900-2904. |
SUNW Y, YAOX. Profermance of resin coated unburned ultra-low density fracturing proppant[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(10): 2900-2904. | |
64 | CHANGF F, BERGERP D, LEE C H. In-situ formation of proppant and highly permeable blocks for hydraulic fracturing[C] //SPE Hydraulic Fracturing Technology Conference. The Woodlands, Texas, USA: Society of Petroleum Engineers, 2015. |
[1] | 高彦静. 单原子催化技术国际研究态势分析[J]. 化工进展, 2023, 42(9): 4667-4676. |
[2] | 李润蕾, 王子彦, 王志苗, 李芳, 薛伟, 赵新强, 王延吉. CuO-CeO2/TiO 2 高效催化CO低温氧化反应性能[J]. 化工进展, 2023, 42(8): 4264-4274. |
[3] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[4] | 储甜甜, 刘润竹, 杜高华, 马嘉浩, 张孝阿, 王成忠, 张军营. 有机胍催化脱氢型RTV硅橡胶的制备和可降解性能[J]. 化工进展, 2023, 42(7): 3664-3673. |
[5] | 俞俊楠, 俞建峰, 程洋, 齐一搏, 化春键, 蒋毅. 基于深度学习的变宽度浓度梯度芯片性能预测[J]. 化工进展, 2023, 42(7): 3383-3393. |
[6] | 杨家添, 唐金铭, 梁恣荣, 黎胤宏, 胡华宇, 陈渊. 新型淀粉基高吸水树脂抑尘剂的制备及其应用[J]. 化工进展, 2023, 42(6): 3187-3196. |
[7] | 陈怡欣, 甄摇摇, 陈瑞浩, 吴继伟, 潘丽美, 姚翀, 罗杰, 卢春山, 丰枫, 王清涛, 张群峰, 李小年. 铂基纳米催化剂的制备及在加氢领域的进展[J]. 化工进展, 2023, 42(6): 2904-2915. |
[8] | 陈明星, 王新亚, 张威, 肖长发. 纤维基耐高温空气过滤材料研究进展[J]. 化工进展, 2023, 42(5): 2439-2453. |
[9] | 于捷, 张文龙. 锂离子电池隔膜的发展现状与进展[J]. 化工进展, 2023, 42(4): 1760-1768. |
[10] | 高江雨, 张耀君, 贺攀阳, 刘礼才, 张枫烨. 磷酸基地质聚合物的制备及其性能研究进展[J]. 化工进展, 2023, 42(3): 1411-1425. |
[11] | 张育新, 王灿, 舒文祥. 二氧化碳的还原及其利用研究进展[J]. 化工进展, 2023, 42(2): 944-956. |
[12] | 王晓亮, 于振秋, 常雷明, 赵浩男, 宋晓琦, 高靖淞, 张一波, 黄传辉, 刘忆, 杨绍斌. 电沉积法制备氢氧化物/氧化物超级电容器电极的研究进展[J]. 化工进展, 2023, 42(10): 5272-5285. |
[13] | 杨凯璐, 陈明星, 王新亚, 张威, 肖长发. 染料废水处理用纳滤膜制备及改性研究进展[J]. 化工进展, 2023, 42(10): 5470-5486. |
[14] | 李钊铭, 沈伯雄, 封硕, 边瑶. 锰基催化剂结构形貌对催化剂抗硫抗水性能影响[J]. 化工进展, 2023, 42(1): 226-235. |
[15] | 张潇, 王占一, 吴峙颖, 刘玉婷, 刘子龙, 刘欣佳, 张遂安. 压裂支撑剂的覆膜改性技术[J]. 化工进展, 2023, 42(1): 386-400. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |