[1] LIU C, SHI J W, GAO C, et al. Manganese oxide-based catalysts for low-temperature selective catalytic reduction of NOx with NH3:a reviewe[J]. Applied Catalysis A:General,2016,522:54-69. [2] 阮冬亮,盘思伟,韦正乐,等. 砷对商业V2O5-WO3/TiO2催化剂脱硝性能的影响[J]. 化工进展,2014,33(4):925-929. RUAN D L, PAN S W, WEI Z L, et al. Effect of arsenic on de-NO efficiency over commercial V2O5-WO3/TiO2 catalyst[J]. Chemical Industry and Engineering Progress,2014,33(4):925-929. [3] 尚会建,张少红,赵丹,等. 分子筛催化剂的研究进展[J]. 化工进展, 2011,30(s1):407-410. SHANG H J, ZHANG S H, ZHAO D, et al. Research progress of molecular sieve catalyst[J]. Chemical Industry and Engineering Progress,2011,30(s1):407-410. [4] 顾卫荣,周明吉,马薇,等. 选择性催化还原脱硝催化剂的研究进展[J]. 化工进展,2012,31(7):1493-1500. GU W R, ZHOU M J, MA W, et al. Research progress on selective catalytic reduction de-NOx catalysts[J]. Chemical Industry and Engineering Progress,2012,31(7):1493-1500. [5] 仝建波,蔺阳,刘淑玲,等. 加氢脱硫催化剂载体的研究进展[J]. 化工进展,2014,33(5):1170-1179. TONG J B, LIN Y, LIU S L, et al. Recent progress in the support of hydrodesulfurization catalysts[J]. Chemical Industry and Engineering Progress,2014,33(5):1170-1179. [6] 韦正乐,黄碧纯,叶代启,等. 烟气NOx低温选择性催化还原催化剂研究进展[J].化工进展,2007,26(3):320-325. WEI Z L, HUANG B C, YE D Q, et al. Review of catalysts for lowtemperature SCR of NOx[J]. Chemical Industry and Engineering Progress, 2007, 26(3):320-325. [7] ZENG Y Q,WANG Y N,ZHANG S L, et al. One-pot synthesis of ceria and cerium phosphate (CeO2-CePO4) nanorod composites for selective catalytic reduction of NO with NH3:active sites and reaction mechanism[J]. Colloid Interface Science,2018,524:8-15. [8] BAI S L, JIANG S T, LI H Y, et al. Carbon nanotubes loaded with vanadium oxide for reduction NO with NH3 at low temperature[J]. Chinese Journal of Chemical Engineering,2015,23:516-519. [9] LI H,ZHANG D,MAITARAD P,et al. In situ synthesis of 3D flowerlike NiMnFe mixed oxides as monolith catalysts for selective catalytic reduction of NO with NH3[J]. Chemical Communications,2012,48(86):10645-10647. [10] 李伟, 林涛, 张秋林,等. 整体式MnOx-CeO2/ZrO2-TiO2催化剂用于NH3低温选择性催化还原NO[J]. 催化学报,2009,30(2):104-110. LI W, LIN T, ZHANG Q L, et al. Low temperature selective catalytic reduction of NO with NH3 over MnOx-CeO2/ZrO2-TiO2 monolith catalyst[J]. Chinese Journal of Catalysis,2009, 30(2):104-110. [11] GILLOT S,GREGORY T,HERVE V,et al. Induced effect of tungsten incorporation on the catalytic properties of CeVO4 systems for the selective reduction of NOx by ammonia[J]. Applied Catalysis B:Environmental,2018,234:318-328. [12] 张巍,卢程,董鹏飞,等. 铜系低温选择性催化还原脱硝催化剂的研究进展[J]. 化工进展,2018,37(10):3865-3974. ZHANG W, LU C, DONG P F, et al. Research progress of low temperature SCR denitration catalyst for copper[J]. Chemical Industry and Engineering Progress,2018,37(10):3865-3974. [13] CHEN J X,PAN K L,YU S J, et al, Combined fast selective reduction using Mn-based catalysts and nonthermal plasma for NOx removal[J]. Environmental Science Pollution Research International, 2017, 24(26):21496-21508. [14] YOSHIDA K. Diesel NOx aftertreatment by combined process using temperature swing adsorption, nonthermal plasma, and NOx recirculatin:NOx removal accelerated by conversion of NO to NO2[J]. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44(6):1054-1059. [15] YAO J, ZHONG Z P. TiO2 preparation by improved homogeneous precipitation and application in SCR catalyst[J]. Journal of Central South University,2016,23(9):2139-2145. [16] ARFAOUI J, ADBELHAMID G, CAROLINA P, et al. Novel V2O5-CeO2-TiO2-SO42-nanostructured aerogel catalyst for the low temperature selective catalytic reduction of NO by NH3 in excess O2[J]. Applied Catalysis B:Environmental,2018,224:264-275. [17] 薛纪纬. SCR催化剂的制备和脱硝性能影响因素的研究[D]. 北京:北京交通大学,2010. XUE J W. Resesrch on SCR catalyst preparation and influence factors of de-NOx performance[D]. Beijing:Beijing Jiaotong University,2010. [18] 高凤雨,唐晓龙,易红宏,等. 商用SCR催化剂的钙中毒及再生研究[C]//2013北京国际环境技术研讨会.2013:116-122. GAO F Y, TANG X L, YI H H, et al. Studies on calcium poisoning mechanism and regeneration of commercial de-NOx SCR catalysts[C]//2013 Beijing International Environmental Technology Conference. 2013:116-122. [19] LIU F D, HE H. Structure-activity relationship of iron titanate catalysts in the selective catalytic reduction of NOx with NH3[J]. Journal of Physical Chemistry C, 2010,114:16929-16936. [20] HUANG J,HUANG H,LIU L C, et al. Revisit the effect of manganese oxidation state on activity in low-temperature NO-SCR[J]. Molecular Catalysis,2018,446:49-57. [21] GUO R T, SUN X, LIU J, et al. Enhancement of the NH3-SCR catalytic activity of MnTiOx catalyst by the introduction of Sb[J]. Applied Catalysis A:General,2018,558:1-8. [22] 甄开吉,王国甲,李荣生,等. 催化作用基础[M].北京:科学出版社, 2005:39-58. ZHEN K J, WANG G J, LI R S, et al. Catalysis basis[M]. Beijing:Science Press,2005:39-58. [23] 王栋,吴惊坤,牛胜利,等. Sn、Ti掺杂改性γ-Fe2O3催化剂结构及NH3-SCR脱硝活性研究[J]. 燃料化学学报,2015,43(7):876-883. WANG D, WU J K, NIU S L, et al. Structural property of γ-Fe2O3 catalysts doped with Sn and Ti and their activity in the selective catalytic reduction of NOx[J]. Journal of Fuel Chemistry and Technology,2015,43(7):876-883. [24] WANG F,MA J Z,HE G Z,et al. Nanosize effect of Al2O3 in Ag/Al2O3 catalyst for the selective catalytic oxidation of ammonia[J]. ACS Catalysis, 2018,8(4):2670-2682. [25] 杨颖欣,马杰文,喻成龙,等. 不同SAPO分子筛负载MnOx催化剂的低温NH3-SCR性能研究[J].环境科学学报,2016,36(9):3400-3408. YANG Y X, MA J W, YU C L, et al. Low-temperature NH3-SCR activity of manganese oxides supported on different SAPO molecular sieves catalysts[J]. Acta Scientiae Circumstantiae, 2016, 36(9):3400-3408. [26] 左建良. 氮氧化物低温选择性催化还原锰基催化剂研究[D]. 广州:华南理工大学, 2014. ZUO J L. Study on Mn-based catalysts for low-temperature selective catalytic reduction of NOx[D]. Guangzhou:South China University of Technology,2014. [27] CHEN H F, XIA Y, HUANG H, et al. Highly dispersed surface active species of Mn/Ce/TiW catalysts for high performance at low temperature NH3-SCR[J]. Chemical Engineering Journal,2017,330(15):1195-1202. [28] WU Z B, JIANG B, LIU Y. Effect of transition metals addition on the catalyst of manganese/titania for low-temperature selective catalytic reduction of nitric oxide with ammonia[J]. Applied Catalysis B:Environmental, 2008, 79(4):347-355. [29] 卢朋,鲁卫哲,李欢,等. 自蔓延高温燃烧合成法制备CeWTiOx催化剂及其NH3-SCR性能[J].燃料化学学报,2017,45(8):986-992. LU P, LU W Z, LI H, et al. Preparation of CeWTiOx catalysts via selfpropagating high temperature synthesis and its NH3-SCR performance[J]. Journal of Fuel Chemistry and Technology,2017,45(8):986-992. [30] MA Y G, ZHANG D Y, SUN H M, et al. Fe-Ce mixed oxides supported on carbon nanotubes for simultaneous removal of NO and HgO in flue gas[J]. Industrial & Engineering Chemistry Research, 2018, 57(9):3187-3194. [31] YAO X J, CHEN L, KONG T T, et al. Support effect of the supported ceria-based catalysts during NH3-SCR reaction[J].Chinese Journal of Catalysis,2017, 38(8):1423-1430. [32] CHEN J X, CHEN Y X, ZHOU M Z, et al. Enhanced performance of ceria-based NOx reduction catalysts by optimal support effect[J]. Environmental Science Technology, 2017,51(1):473-478. [33] PAN W G, HONG J N, GUO R T, et al. Effect of support on the performance of Mn-Cu oxides for low temperature selective catalytic reduction of NO with NH3[J]. Journal of Industrial and Engineering Chemistry,2014,20(4):2224-2227. [34] 周卫可, 闫东杰,黄学敏,等. 锰基低温SCR催化剂研究进展[J]. 应用化工,2017,46(10):2010-2013. ZHOU W K,YAN D J,HUANG X M, et al. Progress in the research of manganese-based low-temperature SCR catalyst[J]. Applied Chemical Industry,2017,46(10):2010-2013. [35] SHEN B X,LIU T,ZHAO N, et al. Iron-doped Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3[J]. Journal of Environmental Sciences,2010,22(9):1447-1454. [36] FRANCE L J, YANG Q, CEHN Z H, et al. Ceria modified FeMnOx-enhanced performance and sulphur resistance for low-temperature SCR of NOx[J]. Applied Catalysis B:Environmental, 2017, 206:203-215. [37] WANG X B,WU S G,ZOU W X, et al. Fe-Mn/Al2O3 catalysts for low temperature selective catalytic reduction of NO with NH3[J]. Chinese Journal of Catalysis,2016,37(8):1314-1323. [38] CAO F, XIANG J, SU S, et al. The activity and characterization of MnOx-CeO2-ZrO2/γ-Al2O3 catalysts for low temperature selective catalytic reduction of NO with NH3[J]. Chemical Engineering Journal, 2014,243:347-354. [39] WEI Z,LU C,DONG P F, et al. Fractal reconstruction of microscopic rough surface for soot layer during ceramic filtration based on weierstrass-mandelbrot function[J]. Industrial & Engineering Chemistry Research,2018,57(11):4033-4044. [40] XU B Q, XU H D, LIN T, et al. Promotional effects of Zr on K+-poisoning resistance of CeTiOx catalyst for selective catalytic reductionof NOx with NH3[J]. Chinese Journal of Catalysis,2016,37(8):1354-1361. [41] CHEN Q L, GUO R T, WANG Q S, et al. The promotion effect of Co doping on the K resistance of Mn/TiO2 catalyst for NH3-SCR of NO[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 64:116-123. [42] 向瑛. 低温等离子体改性催化剂脱除氮氧化物研究[D]. 昆明:昆明理工大学, 2013. XIANG Y. Research on catalysts treated by non-thermal plasma for nitrogen oxide reduction[D]. Kunming:Kunming University of Science and Technology, 2013. [43] 于开录,刘昌俊,夏清,等. 低温等离子技术在催化剂领域的应用[J]. 化学进展,2002,14(6):456-461. YU K L, LIU C J, XIA Q, et al. Applications of low temperature plasma in catalysis[J]. Progress in Chemistry, 2002,14(6):456-461. [44] TANG X L, GAO F Y, XIANG Y, et al. Low temperature catalytic oxidation of nitric oxide over the Mn-CoOx catalyst modified by nonthermal plasma[J]. Catalysis Communications, 2015, 64:12-17. [45] CHEN K G, CHEN R Y, CANG H, et al. Plasma-treated Ce/TiO2-SiO2 catalyst for the NH3-SCR of NOx[J]. Environmental Technology, 2018, 39(14):1-12. [46] 赖瑞云. 低温等离子体改性锰镁复合催化剂催化处理NO研究[D]. 昆明:昆明理工大学,2014. LAI R Y. Research on Mn-Mg-Ox catalysts treated by non-thermal plasma for nitrogen oxide reduction[D]. Kunming:Kunming University of Science and Technology,2014. [47] 杨永辉. 超声强化在催化剂制备及催化反应中的应用[J].化学技术与开发,2012,41(11):32-34. YANG Y H. Applications of ultrasonic intensify in catalyst preparation and catalytic reactions[J]. Technology and Development of Chemical Industry,2012,41(11):32-34. [48] 郭坤,宋存义,常冠钦,等. 超声波浸渍法制备V2O5-WO3/TiO2选择性催化还原脱硝催化剂[J]. 环境工程,2013,31(2):76-79. GUO K,SONG C Y,CHANG G Q, et al. Preparation of V2O5-WO3/TiO2 catalysts by ultrasonic impregnation for selective catalytic reduction[J]. Environmental Engineering, 2013,31(2):76-79. [49] 赵晓媛,张亚平,仲佳鑫,等. 超声波浸渍法制备MnOx/TiO2催化剂低温选择性催化还原NO[J].东南大学学报,2011,41(6):1225-1230. ZHAO X Y, ZHANG Y P, ZHONG J X, et al. MnOx/TiO2 catalysts prepared by ultrasonic impregnation for low temperature selective catalytic reduction of NO[J]. Jourmal of Southeast University, 2014, 4(6):1225-1230. [50] ZHU L, ZHANG L, QU H X, et al. A study on chemisorbed oxygen and reaction process of Fe-CuOx/ZSM-5 via ultrasonic impregnation method for low-temperature NH3-SCR[J]. Journal of Molecular Catalysis A:Chemical,2015,409:207-215. [51] 胡宇峰,薛建明,王小明,等. Mn-Ce/TiO2低温选择性催化还原催化剂二氧化硫中毒及再生特性[J]. 工业催化,2013,21(4):27-33. HU Y F, XUE J M, WANG X M, et al. Research on characterisitics of SO2-poison and regeneration of Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction[J]. Industrial Catalysis, 2013, 21(4):27-33. [52] LIAN Z H, LIU F D, HE H. Effect of preparation methods on the activity of VOx/CeO2 catalysts for the selective catalytic reduction of NOx with NH3[J]. Catalysis Science & Technology, 2015,5(1):389-396. [53] VUONG T H, RADNIK J, SCHNEIDER M, et al. Effect of support synthesis methods on structure and performance of VOx/CeO2 catalysts in low-temperature NH3-SCR of NO[J]. Catalysis Communications, 2016,84:171-174. [54] CHEN H, XIA Y, HUANG H, et al. Highly dispersed surface active species of Mn/Ce/TiW catalysts for high performance at low temperature NH3-SCR[J]. Chemical Engineering Journal, 2017, 330:1195-1202. [55] XU N, HU L, ZHANG Q, et al. Significantly enhanced dielectric performance of poly(vinylidene fluoride-co-hexafluoropylene)-based composites filled with hierarchical flower-like TiO2 particles[J]. ACS Applied Materials & Interfaces, 2015, 7(49):27373-27381. [56] WANG M,IOCOZZIA J,SUN L, et al. Correction:inorganic-modified semiconductor TiO2 nanotube arrays for photocatalysis[J]. Energy & Environmental Science, 2017,7(7):2182-2202. [57] SHEN Q, ZHANG L Y, SUN N N, et al. Hollow MnOx-CeO2 mixed oxides as highly efficient catalysts in NO oxidation[J]. Chemical Engineering Journal,2017,322:46-55. [58] VARGEESE A A, MURALIDHARAN K. Kinetics and mechanism of hydrothermally prepared copper oxide nanorod catalyzed decomposition of ammonium nitrate[J]. Applied Catalysis A:General, 2012,447/448:171-177. [59] HU X L, SHI Q,ZHANG H, et al. NH3-SCR performance improvement over Mo modified Mo(x)-MnOx nanorods at low temperatures[J]. Catalysis Today, 2017,297:17-26. [60] WU G X,LI J,FANG Z T, et al. FeVO4 nanorods supported TiO2 as a superior catalyst for NH3-SCR reaction in a broad temperature range[J]. Catalysis Communications,2015,64:75-79. [61] 杨兴业,李斌,孙亮,等. α-Fe2O3表面结构对NH3选择性催化还原NO活性的影响[J].物理化学学报,2012,28(1):184-188. YANG X Y, LI B, SUN L, et al. Effect of surface structure of α-Fe2O3 on the selective catalytic reduction of NO by NH3[J]. Acta PhysicoChimica Sinica,2012,28(1):184-188. [62] ZONG L Y, ZHANG G D, ZHAO J H, et al. Morphology-controlled synthesis of 3D flower-like TiO2 and the superior performance for selective catalytic reduction of NOx with NH3[J].Chemical Engineering Journal,2018,343:500-511. [63] WANG H, CAI K S, LIU J X, et al. Synthesis of nanosphere TiO2 with flower-like micro-composition and its application for the selective catalytic reduction of NO with NH3 at low temperature[J]. RSC Advances,2016,6(87):84294-84308. [64] ZONG L Y, ZHANG J Y, LU G X, et al. Controlled synthesis of TiO2 shape and effect on the catalytic performance for selective catalytic reduction of NOx with NH3[J]. Catalysis Surveys from Asia, 2018,22(2):105-117. [65] WU Z, JIANG B, LIU Y, et al. DRIFT study of manganese/titaniabased catalysts for low-temperature selective catalytic reduction of NO with NH3[J]. Environmental Science & Technology, 2007,41(16):5812. [66] WANG P L,CHEN S,GAO S, et al. Niobium oxide confined by ceria nanotubes as a novel SCR catalyst with excellent resistance to potassium, phosphorus, and lead[J]. Applied Catalysis B:Environmental,2018,231:299-309. [67] MA Z, DAI S. Design of novel structured gold nanocatalysts[J]. ACS Catalysis, 2011,1(7):805-818. [68] HUANG B J,YU D Q,SHENG Z Y, et al. Novel CeO2@TiO2 core-shell nanostructure catalyst for selective catalytic reduction of NOx with NH3[J]. Journal of Environment Science,2017,55:129-136. [69] ZHANG T, QIU F, LI J H. Design and synthesis of core-shell structured meso-Cu-SSZ-13@mesoporous aluminosilicate catalyst for SCR of NOx with NH3:enhancement of activity, hydrothermal stability and propene poisoning resistance[J]. Applied Catalysis B:Environmental, 2016,195:48-58. [70] YAO W Y, LIU Y, WU Z B. The promoting effect of CeO2@Ce-O-P multi -core@shell structure on SO2 tolerance for selective catalytic reduction of NO with NH3 at low temperature[J]. Applied Surface Science,2018,442:156-163. [71] LI S H, HUANG B C, YU C L. A CeO2-MnOx core-shell catalyst for low-temperature NH3-SCR of NO[J]. Catalysis Communications, 2017, 98:47-51. [72] LIU J X, DU Y H, LIU J, et al. Design of MoFe/beta@CeO2 catalysts with a core-shell structure and their catalytic performances for the selective catalytic reduction of NO with NH3[J]. Applied Catalysis B:Environmental, 2017, 203:704-714. [73] LIU J X,LIU J, ZHAO Z, et al. Fe-beta@CeO2 core-shell catalyst with tunable shell thickness for selective catalytic reduction of NOx with NH3[J]. AIChE Journal, 2017, 63(10):4430-4441. |