化工进展 ›› 2019, Vol. 38 ›› Issue (06): 2550-2558.DOI: 10.16085/j.issn.1000-6613.2018-1802
收稿日期:
2018-09-07
出版日期:
2019-06-05
发布日期:
2019-06-05
通讯作者:
都健
作者简介:
杨蕊(1994—),女,硕士研究生,研究方向为过程系统工程。E-mail:<email>876783789@qq.com</email>。
基金资助:
Rui YANG(),Yu ZHUANG,Linlin LIU,Lei ZHANG,Jian DU()
Received:
2018-09-07
Online:
2019-06-05
Published:
2019-06-05
Contact:
Jian DU
摘要:
功和热是化工工业中使用能源的两种最主要方式,由于流股压力、温度操作需要消耗大量的功热,因此研究功热的协同利用对于提高过程整体能源利用率具有重要的意义。本文首先概述了基于热力学分析的功热交换网络综合的研究情况,以系统?耗最小为目标探讨压缩机、膨胀机优化配置与换热网络用能瓶颈的耦合关系,揭示了功热协同利用的作用机制。然后系统地总结了以年度总费用最小为目标的数学规划模型综合功热交换网络的研究进展,探寻压力操作路径、流股功/热交换匹配、公用工程消耗量及设备投资之间的有效权衡;最后对后续研究进行展望,指出可进一步探究考虑流股冷热性质判定的功热交换网络同步综合、公用工程系统优化与功热交换网络同步设计的耦合等。
中图分类号:
杨蕊, 庄钰, 刘琳琳, 张磊, 都健. 功热交换网络综合的研究进展[J]. 化工进展, 2019, 38(06): 2550-2558.
Rui YANG, Yu ZHUANG, Linlin LIU, Lei ZHANG, Jian DU. Research progress on work and heat exchange network synthesis[J]. Chemical Industry and Engineering Progress, 2019, 38(06): 2550-2558.
压缩机或膨胀机与低温HEN的耦合 | 压缩机或膨胀机与高温HEN的耦合 |
---|---|
只有一条流股膨胀/压缩,只使用一种温位的冷公用工程 | 只有一条流股膨胀/压缩,只使用一种温位的热公用工程 |
膨胀机/压缩机的多变效率η是一个常数 | 膨胀机/压缩机的多变效率η是一个常数 |
流股为理想气体,绝热指数恒定( | 流股为理想气体,绝热指数恒定( |
热公用工程?可忽略 | 冷公用工程?可忽略 |
表1 前提假设
压缩机或膨胀机与低温HEN的耦合 | 压缩机或膨胀机与高温HEN的耦合 |
---|---|
只有一条流股膨胀/压缩,只使用一种温位的冷公用工程 | 只有一条流股膨胀/压缩,只使用一种温位的热公用工程 |
膨胀机/压缩机的多变效率η是一个常数 | 膨胀机/压缩机的多变效率η是一个常数 |
流股为理想气体,绝热指数恒定( | 流股为理想气体,绝热指数恒定( |
热公用工程?可忽略 | 冷公用工程?可忽略 |
1 | KANG L , LIU Y , JIANG N . Synthesis of large-scale heat exchanger networks using a T-Q diagram method[J]. Canadian Journal of Chemical Engineering, 2016, 94(10): 1955-1964. |
2 | YEE T F, GROSSMANN I E , KRAVANJA Z . Simultaneous optimization models for heat integration—Ⅰ. Area and energy targeting and modeling of multi-stream exchangers[J]. Computers & Chemical Engineering, 1990, 14(10): 1151-1164. |
3 | YEE T F, GROSSMANN I E . Simultaneous optimization models for heat integration—Ⅱ. Heat exchanger network synthesis[J]. Computers & Chemical Engineering, 1990, 14(10): 1165-1184. |
4 | ISAFIADE A , BOGATAJ M , FRASER D , et al . Optimal synthesis of heat exchanger networks for multi-period operations involving single and multiple utilities[J]. Chemical Engineering Science, 2015, 127:175-188. |
5 | PENG F , CUI G . Efficient simultaneous synthesis for heat exchanger network with simulated annealing algorithm[J]. Applied Thermal Engineering, 2015, 78: 136-149. |
6 | KIM S Y, JONGSUWAT P , SURIYAPRAPHADILOK U , et al . Global optimization of heat exchanger networks. Part 1: Stages/substages superstructure[J]. Industrial & Engineering Chemistry Research, 2017, 56(20): 5944-5957. |
7 | 俞杭生 . 基于改进超结构的换热网络优化改造[D]. 杭州: 浙江工业大学, 2017. |
YU H S . Heat exchanger networks retrofit based on modified superstructure[D]. Hangzhou: Zhejiang University of Technology, 2017. | |
8 | PAVÃO L V , COSTA C B B , RAVAGNANI M . An enhanced stage-wise superstructure for heat exchanger networks synthesis with new options for heaters and coolers placement[J]. Industrial & Engineering Chemistry Research, 2018, 57(7): 2560-2573. |
9 | HONG X D , LIAO Z W , JIANG B B , et al . New transshipment type MINLP model for heat exchanger network synthesis[J]. Chemical Engineering Science,2017,174: 537-559. |
10 | 肖武, 史朝霞, 姜晓滨, 等 . 考虑管壳式换热器传热强化的换热网络综合研究进展[J]. 化工进展, 2018, 37(4): 1267-1275. |
XIAO W , SHI Z X , JIANG X B , et al . Research progress on heat exchanger network considering heat transfer enhancement of shell-and-tube exchangers[J]. Chemical Industry and Engineering Progress, 2018, 37(4): 1267-1275. | |
11 | PAN M , BULATOV I , SMITH R . Improving heat recovery in retrofitting heat exchanger networks with heat transfer intensification, pressure drop constraint and fouling mitigation[J]. Applied Energy, 2016, 161: 611-626. |
12 | HUANG Y L , FAN L T . Analysis of a work exchanger network[J]. Industrial & Engineering Chemistry Research, 1996, 35(10): 3528-3538. |
13 | LIU G L , ZHOU H , SHEN R J , et al . A graphical method for integrating work exchange network[J]. Applied Energy, 2014, 114(2): 588-599. |
14 | ZHUANG Y , LIU L L , ZHANG L , et al . An upgraded graphical method for the synthesis of direct work exchanger networks[J]. Industrial & Engineering Chemistry Research, 2017, 56: 14304-14315. |
15 | ZHUANG Y , LIU L L , ZHANG L , et al . Direct work exchanger network synthesis of isothermal process based on improved transshipment model[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 81: 295-304. |
16 | 庄钰, 刘琳琳, 李继龙, 等 . 基于转运模型的功交换网络综合[J].化工进展, 2015, 34(4): 952-956. |
ZHUANG Y , LIU L L , LI J L , et al . Synthesis of work exchange network based on transshipment model[J]. Chemical Industry and Engineering Progress, 2015, 34(4): 952-956. | |
17 | 周华, 刘桂莲, 冯霄 . 考虑效率的功交换网络问题表格法[J]. 化工学报, 2011, 62(6):1600-1605. |
ZHOU H , LIU G L , FENG X . Problem table method for work exchange network with efficiency considered[J]. CIESC Journal, 2011, 62(6): 1600-1605. | |
18 | 陈慧, 冯霄 . 考虑经济性的功量交换网络的最优匹配[J]. 清华大学学报(自然科学版), 2012, 52(3): 298-302. |
CHEN H , FENG X . Optimized work exchange networks with economic consideration[J]. J. Tsinghua Univ. (Sci. & Tech.), 2012, 52(3): 298-302. | |
19 | RAZIB M S , HASAN M M F , KARIMI I A . Preliminary synthesis of work exchange networks[J]. Computers & Chemical Engineering, 2012, 37(1):262-277. |
20 | 庄钰 . 基于转运模型的功交换网络综合[D]. 大连: 大连理工大学, 2015. |
ZHUANG Y . Synthesis of work exchange network based on transshipment model[D]. Dalian: Dalian University of Technology, 2015. | |
21 | LINNHOFF B , HINDMARSH E . The pinch design method for heat exchanger networks[J].Chemical Engineering Science,1983,38(5): 745-763. |
22 | TOWNSEND D W , LINNHOFF B . Heat and power networks in process design. Part Ⅰ: Criteria for placement of heat engines and heat pumps in process networks[J]. AIChE Journal, 1983, 29(5): 742-748. |
23 | TOWNSEND D W , LINNHOFF B . Heat and power networks in process design. Part Ⅱ: Design procedure for equipment selection and process matching[J]. AIChE Journal, 1983, 29(5): 748-771. |
24 | DHOLE V R , LINNHOFF B . Overall design of low temperature processes[J]. Computers & Chemical Engineering, 1994, 18(18): S105–S111. |
25 | LINNHOFF B , DHOLE V R . Shaftwork targets for low-temperature process design[J]. Chemical Engineering Science, 1992, 47(8): 2081-2091. |
26 | PANJESHAHI M H , SAHAFZADEH M , ATAEI A , et al . Integration of a gas turbine with an ammonia process for improving energy efficiency[J]. Applied Thermal Engineering, 2013, 58(1/2): 594-604. |
27 | GLAVIC P , KRAVANJA Z , HOMSAK M . Heat integration of reactors—I. Criteria for the placement of reactors into process flowsheet[J]. Chemical Engineering Science, 1988, 43(3): 593-608. |
28 | LINNHOFF B , DUNFORD H , SMITH R . Heat integration of distillation columns into overall processes[J]. Chemical Engineering Science, 1983, 38(8): 1175-1188. |
29 | SMITH R , LINNHOFF B . The design of separators in the context of overall processes[J]. Chemical Engineering Research & Design, 1988, 66(3): 195-228. |
30 | ASPELUND A , BERSTAD D O , GUNDERSEN T . An extended pinch analysis and design procedure utilizing pressure based exergy for subambient cooling[J]. Applied Thermal Engineering, 2007, 27(16): 2633-2649. |
31 | GUNDERSEN T , BERSTAD D O , ASPELUND A . Extending pinch analysis and process integration into pressure and fluid phase considerations[J]. Chemical Engineering Transactions, 2009, 18: 33-38. |
32 | FU C , GUNDERSEN T . Recuperative vapor recompression heat pumps in cryogenic air separation processes[J]. Energy, 2013, 59: 708-718. |
33 | FU C , GUNDERSEN T . Sub-ambient heat exchanger network design including expanders[J]. Chemical Engineering Science, 2015, 138: 712-729. |
34 | FU C , GUNDERSEN T . Sub-ambient heat exchanger network design including compressors[J]. Chemical Engineering Science, 2015, 137: 631-645. |
35 | FU C , GUNDERSEN T . Integrating expanders into heat exchanger networks above ambient temperature[J]. AIChE Journal, 2015, 61(10): 3404-3422. |
36 | FU C , GUNDERSEN T . Integrating compressors into heat exchanger networks above ambient temperature[J]. AIChE Journal, 2015, 61(11): 3770-3785. |
37 | FU C , GUNDERSEN T . Correct integration of compressors and expanders in above ambient heat exchanger networks[J]. Energy, 2016, 116: 1282-1293. |
38 | FU C , GUNDERSEN T . Appropriate placement of compressors and expanders in sub-ambient processes[C]// KRAVANJA Z, BOGATAJ M. Computer Aided Chemical Engineering, 2016, 38: 1767-1772. |
39 | KANSHA Y , TSURU N , SATO K , et al . Self-heat recuperation technology for energy saving in chemical processes[J]. Industrial & Engineering Chemistry Research, 2009, 48(16): 7682-7686. |
40 | FU C , GUNDERSEN T . Exergy analysis and heat integration of a coal-based oxy-combustion power plant[J]. Energy & Fuels, 2013, 27(11): 7138-7149. |
41 | FU C , ANANTHARAMAN R , GUNDERSEN T . Optimal integration of compression heat with regenerative steam Rankine cycles in oxy-combustion coal based power plants[J]. Energy, 2015, 84: 612- 622. |
42 | LIAO Z W , TU G N , HUANG Z L , et al . Optimal process design for recovering effluent gas at subambient temperature[J]. Journal of Cleaner Production, 2017, 144: 130-141. |
43 | LIAO Z W , HU Y X , TU G N , et al . Optimal design of hybrid cryogenic flash and membrane system[J]. Chemical Engineering Science, 2018, 179: 13-31. |
44 | LINNHOFF B , VREDEVELD D R . Pinch technology has come of age[J]. Chemical Engineering Progress, 1984, 80(7):33-40. |
45 | WECHSUNG A , ASPELUND A , GUNDERSEN T , et al . Synthesis of heat exchanger networks at subambient conditions with compression and expansion of process streams[J]. AIChE Journal, 2011, 57(8): 2090- 2108. |
46 | ONISHI V C , RAVAGNANI M A S S , CABALLERO J A . Simultaneous synthesis of heat exchanger networks with pressure recovery: optimal integration between heat and work[J]. AIChE Journal, 2014, 60(3): 893-908. |
47 | ONISHI V C , RAVAGNANI M A S S , CABALLERO J A . MINLP model for the synthesis of heat exchanger networks with handling pressure of process streams[J] Computer Aided Chemical Engineering, 2014, 33: 163-168. |
48 | ONISHI V C , RAVAGNANI M A S S , CABALLERO J A . Simultaneous synthesis of work exchange networks with heat integration[J]. Chemical Engineering Science, 2014, 112(12): 87-107. |
49 | ONISHI V C , RAVAGNANI M A S S , CABALLERO J A . Retrofit of heat exchanger networks with pressure recovery of process streams at sub-ambient conditions[J]. Energy Conversion & Management, 2015, 94: 377-393. |
50 | HUANG K F , KARIMI I A . Work-heat exchanger network synthesis(WHENS)[J]. Energy, 2016, 113: 1006-1017. |
51 | ZHUANG Y , LIU L L , LIU Q L , et al . Step-wise synthesis of work exchange networks involving heat integration based on the transshipment model[J]. Chinese Journal of Chemical Engineering, 2017, 25(8): 1052-1060. |
52 | FU C , GUNDERSEN T . Heat and work integration: fundamental insights and applications to carbon dioxide capture processes[J]. Energy Conversion & Management, 2016, 121: 36-48. |
[1] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[2] | 张凤岐, 崔成东, 鲍学伟, 朱炜玄, 董宏光. 胺液吸收-分步解吸脱硫工艺的设计与评价[J]. 化工进展, 2023, 42(S1): 518-528. |
[3] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[4] | 李梦圆, 郭凡, 李群生. 聚乙烯醇生产中回收工段第三、第四精馏塔的模拟与优化[J]. 化工进展, 2023, 42(S1): 113-123. |
[5] | 张瑞杰, 刘志林, 王俊文, 张玮, 韩德求, 李婷, 邹雄. 水冷式复叠制冷系统的在线动态模拟与优化[J]. 化工进展, 2023, 42(S1): 124-132. |
[6] | 王福安. 300kt/a环氧丙烷工艺反应器降耗减排分析[J]. 化工进展, 2023, 42(S1): 213-218. |
[7] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[8] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[9] | 李春利, 韩晓光, 刘加朋, 王亚涛, 王晨希, 王洪海, 彭胜. 填料塔液体分布器的研究进展[J]. 化工进展, 2023, 42(9): 4479-4495. |
[10] | 董佳宇, 王斯民. 超声强化对二甲苯结晶特性及调控机理实验[J]. 化工进展, 2023, 42(9): 4504-4513. |
[11] | 刘炫麟, 王驿凯, 戴苏洲, 殷勇高. 热泵中氨基甲酸铵分解反应特性及反应器结构优化[J]. 化工进展, 2023, 42(9): 4522-4530. |
[12] | 王晨, 白浩良, 康雪. 大功率UV-LED散热与纳米TiO2光催化酸性红26耦合系统性能[J]. 化工进展, 2023, 42(9): 4905-4916. |
[13] | 李海东, 杨远坤, 郭姝姝, 汪本金, 岳婷婷, 傅开彬, 王哲, 何守琴, 姚俊, 谌书. 炭化与焙烧温度对植物基铁碳微电解材料去除As(Ⅲ)性能的影响[J]. 化工进展, 2023, 42(7): 3652-3663. |
[14] | 李蓝宇, 黄新烨, 王笑楠, 邱彤. 化工科研范式智能化转型的思考与展望[J]. 化工进展, 2023, 42(7): 3325-3330. |
[15] | 林海, 王彧斐. 考虑噪声约束的分布式风场布局优化[J]. 化工进展, 2023, 42(7): 3394-3403. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |