化工进展 ›› 2019, Vol. 38 ›› Issue (05): 2527-2535.DOI: 10.16085/j.issn.1000-6613.2018-1532
收稿日期:
2018-07-23
修回日期:
2018-09-28
出版日期:
2019-05-05
发布日期:
2019-05-05
作者简介:
<named-content content-type="corresp-name">陈国华</named-content>(1967—),教授,博士生导师,研究方向为工业安全与风险评价技术及管理信息系统、过程装备安全可靠性及风险评价技术。E-mail:<email>mmghchen@scut.edu.cn</email>。
基金资助:
Guohua CHEN(),Mengting ZOU,Kongxing HUANG,Yunfeng YANG
Received:
2018-07-23
Revised:
2018-09-28
Online:
2019-05-05
Published:
2019-05-05
摘要:
随着自然灾害诱发工业事故的增加,多灾种耦合影响下的化工园区脆弱性研究受到广泛关注。本文对国内外脆弱性的相关概念进行归纳总结,分析风险与脆弱性之间的关系;通过分析化工园区多灾种耦合内涵,构建多灾种耦合脆弱性框架,研究化工园区在单一灾害、两次灾害及多灾种耦合作用下的脆弱性演化过程;依据多灾种耦合脆弱性评估的思路,划分多灾种耦合脆弱性现有评估方法,分析各评估方法的优缺点;结合化工园区多灾种耦合脆弱性特点,提出面向多重扰动时化工园区脆弱性评估中亟待开展的研究内容,为深入开展多灾种耦合脆弱性评估提供依据。
中图分类号:
陈国华, 邹梦婷, 黄孔星, 杨运锋. 化工园区多灾种耦合脆弱性方法探究与前沿综述[J]. 化工进展, 2019, 38(05): 2527-2535.
Guohua CHEN, Mengting ZOU, Kongxing HUANG, Yunfeng YANG. Methods analysis and frontiers review of vulnerability for coupled multi-hazard in Chemical Industry Park[J]. Chemical Industry and Engineering Progress, 2019, 38(05): 2527-2535.
年份 | 作者 | 脆弱性概念 |
---|---|---|
1981 | Timmerman[ | 脆弱性是系统在灾后可能产生不利影响的程度 |
1992 | Dow[ | 脆弱性是社会个体或社会群体应对灾害事件的能力,这种能力源于他们在自然环境和社会环境中所处的形势 |
1998 | George等[ | 脆弱性是暴露性、适应能力(涵盖抵御能力及恢复能力)两大变量的函数 |
2003 | Turner等[ | 脆弱性是系统、子系统或系统组分由于暴露于危险源、扰动或压力,可能引起的损失程度 |
2006 | Adger[ | 脆弱性由暴露于扰动或外部压力、对扰动的敏感性和适应能力等部分构成 |
2007 | Folke等[ | 脆弱性是系统遭受不利影响,可能引起的潜在损失的程度 |
2011 | Hinkel[ | 脆弱性是系统容易受到影响以及不能应对不利气候变化(包括气候转变和极端情况)影响的程度 |
2016 | Beroya-Eitner[ | 脆弱性是指应对外部扰动(包括特定空间范围内的自然或人为因素)时,系统的弱阻力和低韧性 |
2018 | Lina等[ | 脆弱性是系统在受到不同类型(连续/瞬时;内部/外部)的不利影响时,系统功能损失的程度,与系统韧性(系统抵抗干扰的能 力)成反比 |
表1 不同时期典型的脆弱性概念
年份 | 作者 | 脆弱性概念 |
---|---|---|
1981 | Timmerman[ | 脆弱性是系统在灾后可能产生不利影响的程度 |
1992 | Dow[ | 脆弱性是社会个体或社会群体应对灾害事件的能力,这种能力源于他们在自然环境和社会环境中所处的形势 |
1998 | George等[ | 脆弱性是暴露性、适应能力(涵盖抵御能力及恢复能力)两大变量的函数 |
2003 | Turner等[ | 脆弱性是系统、子系统或系统组分由于暴露于危险源、扰动或压力,可能引起的损失程度 |
2006 | Adger[ | 脆弱性由暴露于扰动或外部压力、对扰动的敏感性和适应能力等部分构成 |
2007 | Folke等[ | 脆弱性是系统遭受不利影响,可能引起的潜在损失的程度 |
2011 | Hinkel[ | 脆弱性是系统容易受到影响以及不能应对不利气候变化(包括气候转变和极端情况)影响的程度 |
2016 | Beroya-Eitner[ | 脆弱性是指应对外部扰动(包括特定空间范围内的自然或人为因素)时,系统的弱阻力和低韧性 |
2018 | Lina等[ | 脆弱性是系统在受到不同类型(连续/瞬时;内部/外部)的不利影响时,系统功能损失的程度,与系统韧性(系统抵抗干扰的能 力)成反比 |
1 | 魏利军, 师立晨 . 科技助力创建安全智慧型化工园区[J]. 中国安全生产科学技术, 2016, 12(10): 192. |
WEI L J , SHI L C . Technology helps create a safe and intelligent Chemical Industrial Park [J]. Journal of Safety Science and Technology, 2016, 12(10): 192. | |
2 | HEWITT K , BURTON I . Hazardousness of a place: a regional ecology of damaging events [M]. Toronto: Toronto Press, 1971. |
3 | 盖程程, 翁文国, 袁宏永 . 基于GIS的多灾种耦合综合风险评估[J]. 清华大学学报(自然科学版), 2011, 51(5): 627-631. |
GAI C C , WENG W G , YUAN H Y . Multi-hazard risk assessment using GIS in urban areas [J]. Journal of Tsinghua University (Science and Technology), 2011, 51(5): 627-631. | |
4 | CRUZ A , STEINBERG L J . Industry preparedness for earthquakes and earthquake-triggered Hazmat accidents in the 1999 Kocaeli earthquake[J]. Earthquake Spectra, 2012, 21(2): 285-303. |
5 | Environmental Protection Agency U. S. .Response to 2005 Hurricanes [EB/OL]. http: //www. epa. gov/katrina/testresults/murphy/. [2017-03-25]. |
6 | 孙亮, 顾建华 . 美国政府对卡特里娜飓风的调查报告 联邦政府对卡特里娜飓风的响应: 经验与教训(一)[J]. 世界地震译丛, 2008, 9(1): 70-83. |
SUN L , GU J H . US government's report on hurricane Katrina the federal response to hurricane Katrina: lessons learned (one)[J]. Translated World Seismology, 2008, 9(1): 70-83. | |
7 | TIMMERMAN P . Vulnerability, resilience and the collapse of society: a review of models and possible climatic applications [D]. Toronto: Institute for Environmental Studies, University of Toronto, 1981. |
8 | DOW K . Exploring differences in our common future(s): the meaning of vulnerability to global environmental change [J]. Geoforum, 1992, 23(3): 417-436. |
9 | GEORGE E C , SUSANNE C M , SAMUEL J R , et al . Assessing the vulnerability of coastal communities to extreme storms: the case of REVERE, MA., USA [J]. Mitigation and Adaptation Strategies for Global Change, 1998, 3(1): 59-82. |
10 | TURNER B , KASPERSON R E , MATSON P A , et al . A framework for vulnerability analysis in sustainability science [J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(14): 8074-8079. |
11 | ADGER W N . Vulnerability [J]. Global Environmental Change, 2006, 16(3): 268-281. |
12 | FOLKE C , DANELL K , ELMQVIST T , et al . Managing climate change impacts to enhance the resilience and sustainability of Fennoscandian forests[J]. Ambio, 2007, 36(7): 528-533. |
13 | HINKEL J . “Indicators of vulnerability and adaptive capacity”: towards a clarification of the science-policy interface[J]. Global Environmental Change, 2011, 21(1): 198-208. |
14 | BEROYA-EITNER M A . Ecological vulnerability indicators[J]. Ecological Indicators, 2016, 60(2): 329-334. |
15 | LINA M B , JENNY M , CLARA V . Vulnerability of socio-ecological systems: a conceptual framework[J]. Ecological Indicators, 2018, 84(1): 632-647. |
16 | GALLOPIN G C . Linkages between vulnerability, resilience, and adaptive capacity[J]. Global Environmental Change, 2006, 16(3): 293-303. |
17 | 李求进 . 化工园区区域脆弱性研究概述[C]// 中国职业安全健康协会2013年学术年会论文集. 福州:中国职业安全健康协会, 2013: 76-85. |
LI Q J . Research on regional vulnerability of Chemical Industry Park [C]// Proceedings of the 2013 Annual Meeting of China Occupational Safety and Health Association. Fuzhou: China Occupational Safety and Health Association, 2013: 76-85. | |
18 | LUERS A L . The surface of vulnerability: an analytical framework for examining environmental change [J]. Global Environmental Change, 2005, 15(3): 214-223. |
19 | 黄浪, 吴超, 杨冕, 等 . 韧性理论在安全科学领域中的应用[J]. 中国安全科学学报, 2017, 27(3): 1-6. |
HUANG L , WU C , YANG M , et al . Application of resilience theory in field of safety science [J]. Journal of Safety Science and Technology, 2017, 27(3): 1-6. | |
20 | FOLKE C . Resilience: the emergence of a perspective for social-ecological systems analyses [J]. Global Environmental Change, 2006, 16(3): 253-267. |
21 | HOSSEINI S , BARKER K , RAMIREZ-MARQUEZ J E . A review of definitions and measures of system resilience [J]. Reliability Engineering & System Safety, 2016, 145(2): 47-61. |
22 | CURRENTS P . A comparative analysis of disaster risk, vulnerability and resilience composite indicators [J]. PLOS Currents, 2017, 9(3): 53-64. |
23 | VUGRIN E D , WARREN D E , EHLEN M A . A resilience assessment framework for infrastructure and economic systems: quantitative and qualitative resilience analysis of petrochemical supply chains to a hurricane [J]. Process Safety Progress, 2011, 30(3): 280-290. |
24 | 陶鹏 . 基于脆弱性视角的灾害管理整合研究[J]. 公共行政评论, 2013, 6(2): 173-177. |
TAO P . Integrated disaster management: from the perspective of vulnerability science [J]. Journal of Public Administration, 2013, 6(2): 173-177. | |
25 | 陈国华 . 风险工程学[M]. 北京: 国防工业出版社, 2007. |
CHEN G H . Risk engineering [M]. Beijing: National Defense Industry Press,2007. | |
26 | 卢颖, 侯云玥, 郭良杰, 等 . 沿海城市多灾种耦合危险性评估的初步研究——以福建泉州为例[J]. 灾害学, 2015, 30(1): 211-216. |
LU Y , HOU Y Y , GUO L J , et al . Preliminary study on integrated assessment for multi-hazard of coastal city: case study of Quanzhou, Fujian Province [J]. Journal of Catastrophology, 2015, 30(1): 211-216. | |
27 | 明晓东, 徐伟, 刘宝印, 等 . 多灾种风险评估研究进展[J]. 灾害学, 2013, 28(1): 126-132. |
MING X D , XU W , LIU B Y , et al . An review of the progress on multi-risk assessment [J]. Journal of Catastrophology, 2013, 28(1): 126-132. | |
28 | 肖盛燮 . 灾变链式理论及应用[M]. 北京:科学出版社, 2006. |
XIAO S X . Cataclysmic chain theory and application [M]. Beijing: Science Press, 2006. | |
29 | KABLAN M K A , DONGO K , COULIBALY M . Assessment of social vulnerability to flood in urban Côted’Ivoire using the MOVE framework [J]. Water, 2017, 9(4): 1-19. |
30 | DAVIDSON R . An urban earthquake disaster risk index [D]. California: Stanford University, 1997. |
31 | 樊运晓, 罗云, 陈庆寿 . 区域承灾体脆弱性评价指标体系研究[J]. 现代地质, 2001, 15(1): 113-116. |
FAN Y X , LUO Y , CHEN Q S . Research on indexes system about regional vulnerability assessment [J]. Geoscience, 2001, 15(1): 113-116. | |
32 | FEKETE A . Validation of a social vulnerability index in context to river-floods in Germany [J]. Natural Hazards & Earth System Sciences, 2009, 9(2): 393-403. |
33 | 潘秀敏 . 基于脆弱性理论的电网故障分区研究[D]. 北京: 华北电力大学, 2015. |
PAN X M . Research on failure partition of power grid based on vulnerability theory [D]. Beijing: North China Electric Power University, 2015. | |
34 | 郭桂祯, 赵飞, 王丹丹 . 基于脆弱性曲线的台风-洪涝灾害链房屋倒损评估方法研究[J]. 灾害学, 2017, 32(4): 94-97. |
GUO G Z , ZHAO F , WANG D D . A method research of house damage in typhoon-flood disaster chain based oil vulnerability curve [J]. Journal of Catastrophology, 2017, 32(4): 94-97. | |
35 | BADILLA C E . Flood hazard, vulnerability and risk assessment in the city of Turialba, Costa Rica[D]. The Netherlands: Inernational Institute for Geo-information Science and Earth Observation, 2002. |
36 | RANIEL M S . Development of wind vulnerability curves of low-rise wooden frame structures in the Greater Metro Manila Area, Philippines [J]. Philippine Engineering Journal, 2017, 38(1): 15-26. |
37 | CUTTER S L , Mitchell J T , Scott M S . Revealing the vulnerability of people and places: a case study of Georgetown County, South Carolina [J]. Annals of the Association of American Geographers, 2000, 90(4): 713-737. |
38 | METZGER M J , LEEMANS R , SCHRÖTER D . A multidisciplinary multi-scale framework for assessing vulnerabilities to global change [J]. International Journal of Applied Earth Observation & Geoinformation, 2005, 7(4): 253-267. |
39 | HAMMOURI N , ELNAQA A . GIS based hydrogeological vulnerability mapping of groundwater resources in Jerash Area-Jordan [J]. Geofísica Internacional, 2013, 47(2): 85-97. |
40 | MAHSA A , PARHAM J . Vulnerability analysis of the urban environments to different seismic scenarios: residential buildings and associated population distribution modelling through integrating dasymetric mapping method and GIS [J]. Procedia Engineering, 2017, 198(9): 454-466. |
41 | 李丽娜 . 城市化影响下自然-人工复合生态系统脆弱性评估模型构建与应用研究[D]. 上海:华东师范大学, 2010. |
LI L N . Construction and application of vulnerability assessment model of natural artificial composite ecosystem under the influence of urbanization [D]. Shanghai: East China Normal University, 2010. | |
42 | JELLOULI O , BERNOUSSI A , AMHARREF M , et al . Vulnerability and protector control: cellular automata approach [J]. Journal of Cellular Automata, 2014, 5(4): 218-227. |
43 | 梁志鹏, 彭显刚, 梁飞强, 等 . 基于元胞自动机演化的复杂电网脆弱性研究[J]. 广东电力, 2016, 29(1): 45-50. |
LIANG Z P , PENG X G , LIANG F Q , et al . Research on vulnerability of complex power grid based on cellular automata evolution [J]. Guangdong Electric Power, 2016, 29(1): 45-50. | |
44 | 王诗莹, 李向阳, 于峰 . 城市CIS物理关联脆弱性的动态分析方法[J]. 运筹与管理, 2017, 26(8): 115-122. |
WANG S Y , LI X Y , YU F . Dynamic assessment method of urban critical infrastructure system physical interdependency vulnerability [J]. Operations Research and Management Science, 2017, 26(8): 115-122. | |
45 | GHEORGHE A V , DAN V V, KATINA P F , et al . Use of cellular automata in assessment of risk and vulnerability [J]. Topics in Safety, Risk, Reliability and Quality, 2018, 34(11): 131-148. |
[1] | 张婷婷, 左旭乾, 田玲娣, 王世猛. 化工园区挥发性有机物排放清单及因子库构建方法[J]. 化工进展, 2023, 42(S1): 549-557. |
[2] | 李志远, 黄亚继, 赵佳琪, 于梦竹, 朱志成, 程好强, 时浩, 王圣. 污泥与聚氯乙烯共热解重金属特性[J]. 化工进展, 2023, 42(9): 4947-4956. |
[3] | 吴展华, 盛敏. 绝热加速量热仪在反应安全风险评估应用中的常见问题[J]. 化工进展, 2023, 42(7): 3374-3382. |
[4] | 陆诗建, 张媛媛, 吴文华, 杨菲, 刘玲, 康国俊, 李清方, 陈宏福, 王宁, 王风, 张娟娟. 百万吨级CO2捕集项目亚硝胺污染物扩散健康风险评估[J]. 化工进展, 2023, 42(6): 3209-3216. |
[5] | 赵景斌, 王彦富, 王涛, 马伟恺, 王琛. 基于蒙特卡洛模拟和动态事件树的储罐脆弱性评估[J]. 化工进展, 2023, 42(5): 2751-2759. |
[6] | 李坡, 张珊珊, 施锦秋, 高航, 王明新. 活化过硫酸盐修复苯胺污染地下水及其环境风险[J]. 化工进展, 2022, 41(5): 2753-2760. |
[7] | 付杰, 邱春生, 王晨晨, 郑金鑫, 刘楠楠, 王栋, 王少坡, 孙力平. 污泥热水解处理过程重金属的迁移转化与风险评价[J]. 化工进展, 2022, 41(4): 2216-2225. |
[8] | 陈国栋, 刘海成, 孟无霜, 尤雨, 张皓, 曹梦茹. 微塑料老化的人工干预及理化特性表征研究进展[J]. 化工进展, 2022, 41(12): 6443-6453. |
[9] | 张雅珊, 陈宗耀, 马伟芳. 微塑料的迁移转化及其生态风险研究进展[J]. 化工进展, 2022, 41(11): 6080-6098. |
[10] | 陈培珠, 陈国华, 门金坤. 化工园区应急响应阶段应急救援与疏散双向路径规划[J]. 化工进展, 2022, 41(1): 503-512. |
[11] | 陈培珠, 陈国华, 周利兴, 门金坤. 化工园区多Agent协同应急智能决策体系[J]. 化工进展, 2021, 40(8): 4656-4665. |
[12] | 李松旌, 樊向阳, 崔二苹, 胡超, 崔丙健, 刘源, 李中阳, 景若瑶, 李胜曙. PPCPs在土壤-作物系统行为特征及环境风险的研究进展[J]. 化工进展, 2021, 40(5): 2827-2838. |
[13] | 杨挺. 中国化工园区建设管理的“六个一体化”[J]. 化工进展, 2021, 40(10): 5845-5853. |
[14] | 王曰杰, 李玲玲. FCC废催化剂金属形态特征及其生态风险评价[J]. 化工进展, 2021, 40(1): 542-549. |
[15] | 王海清, 刘荫, 高智泉, 眭文祺. 石化装置改扩建对火炬系统负荷影响的量化分析[J]. 化工进展, 2020, 39(9): 3842-3848. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |