化工进展 ›› 2019, Vol. 38 ›› Issue (01): 260-277.DOI: 10.16085/j.issn.1000-6613.2018-1196
孙杨1(),丁豆豆1,林昌1,刘向林1,张超1,田鹏飞1,曹晨熙1,杨子旭1,徐晶1(),韩一帆1,2()
收稿日期:
2018-06-07
修回日期:
2018-09-26
出版日期:
2019-01-05
发布日期:
2019-01-05
通讯作者:
徐晶,韩一帆
作者简介:
孙杨(1994—),女,博士研究生,研究方向为高级氧化法污水处理技术。E-mail:<email>296329490@qq.com</email>。|徐晶,教授,博士生导师。E-mail:<email>xujing@ecust.edu.cn</email>|韩一帆,教授,博士生导师,研究方向为工业催化。E-mail:<email>yifanhan@ecust.edu.cn</email>
基金资助:
Yang SUN1(),doudou DING1,Chang LIN1,Xianglin LIU1,Chao ZHANG1,Pengfei TIAN1,Chenxi CAO1,Zixu YANG1,Jing XU1(),Yifan HAN1,2()
Received:
2018-06-07
Revised:
2018-09-26
Online:
2019-01-05
Published:
2019-01-05
Contact:
Jing XU,Yifan HAN
摘要:
动态现场原位(operando)表征是在接近过程工业反应条件下,揭示催化反应机理及工业催化剂结构演变的新兴动态结构解析技术。本文综述了operando表征技术在多相催化反应中的应用及发展趋势,从operando红外、operando拉曼、operando X射线衍射、operando穆斯堡尔谱、operando X射线吸收谱及operando X射线光电子能谱6个方面概述了operando技术的最新进展。此外,还介绍了正在兴起的operando联用技术,该技术综合多种operando技术为一体,能够在反应过程中对催化剂的结构全貌进行深度表征,实现工业催化剂的理性设计,将成为未来多相催化研究的重要手段。然而,目前operando技术的时间分辨率和空间分辨率仍需进一步提升,其巨大潜力依然有待开发。
中图分类号:
孙杨, 丁豆豆, 林昌, 刘向林, 张超, 田鹏飞, 曹晨熙, 杨子旭, 徐晶, 韩一帆. 动态现场原位(operando)表征技术在多相催化反应中的应用与进展[J]. 化工进展, 2019, 38(01): 260-277.
Yang SUN, doudou DING, Chang LIN, Xianglin LIU, Chao ZHANG, Pengfei TIAN, Chenxi CAO, Zixu YANG, Jing XU, Yifan HAN. Advances in operando techniques for the heterogeneous catalytic reactions[J]. Chemical Industry and Engineering Progress, 2019, 38(01): 260-277.
1 | ROBERTS M W . Birth of the catalytic concept (1800—1900)[J]. Catalysis Letters,2000,67(1):1-4. |
2 | BERZELIUS J J . Quelques idées sur une nouvelle force agissant dans les combinaisons des corps organiques[J]. Ann. Chim.,1836,61:146-151. |
3 | TALOR H S . A theory of the catalytic surface[J]. Proceedings of the Royal Society of London Series A,1925,108(745): 105-111. |
4 | TOPSØE H . Developments in operando studies and in situ characterization of heterogeneous catalysts[J]. Journal of Catalysis,2003,216(1): 155-164. |
5 | BAÑARES M A . Operando methodology: combination of in situ spectroscopy and simultaneous activity measurements under catalytic reaction conditions[J]. Catalysis Today,2005,100(1): 71-77. |
6 | WECKHUYSEN B M . Determining the active site in a catalytic process: operando spectroscopy is more than a buzzword[J]. Physical Chemistry Chemical Physics, 2003,5(20): 4351-4360. |
7 | HAW J F . In-situ spectroscopy in heterogeneous catalysis[M]. Wiley-VCH: Weinheim,2002. |
8 | ROBERT S . Heterogeneous catalysis[J]. Angewandte Chemie International Edition,2015,54(11): 3465-3520. |
9 | SATTLER J J H B , GONZALEZ-JIMENEZ I D , MENS A M ,et al . Operando UV-vis spectroscopy of a catalytic solid in a pilot-scale reactor: deactivation of a CrO x /Al2O3 propane dehydrogenation catalyst[J]. Chemical Communications,2013,49(15): 1518-1520. |
10 | OKAWA T , ONISHI T , TAMARU K . Infrared and kinetic study of ammonia decomposition on supported iron catalysts: infrared observation of molecularly adsorbed N2 in smmonia decomposition[M]. Zeitschrift für Physikalische Chemie, 1977: 239. |
11 | WECKHUYSEN B M . Snapshots of a working catalyst: possibilities and limitations of in situ spectroscopy in the field of heterogeneous catalysis[J]. Chem. Commun.,2002,2: 97-110. |
12 | FINGLAND B R , RIBEIRO F H , MILLER J T . Simultaneous measurement of X-ray absorption spectra and kinetics: a fixed-bed plug-flow operando reactor[J]. Catalysis Letters,2009,131(1): 1-6. |
13 | MATAM S K , KORSAK O , BOCHER L ,et al . Lab scale fixed-bed reactor for operando X-ray absorption spectroscopy for structure activity studies of supported metal oxide catalysts[J]. Topics in Catalysis,2011,54(16): 1213. |
14 | ZAERA F . Infrared and molecular beam studies of chemical reactions on solid surfaces[J]. International Reviews in Physical Chemistry,2010,21(3): 433-471. |
15 | WANG J , KISPERSKY V F NICHOLAS DELGASS W ,et al . Determination of the Au active site and surface active species via operando transmission FTIR and isotopic transient experiments on 2.3wt.% Au/TiO2 for the WGS reaction[J]. Journal of Catalysis,2012, 289: 171-178. |
16 | WILLEY R R . Fourier transform infrared spectrophotometer for transmittance and diffuse reflectance measurements[J]. Appl. Spectrosc., 1976,30(6): 593-601. |
17 | PAREDES‐NUNEZ A , LORITO D , BUREL L ,et al . CO hydrogenation on cobalt-based catalysts: tin poisoning unravels CO in hollow sites as a main surface intermediate[J]. Angewandte Chemie,2018,130(2): 556-559. |
18 | ZHANG X-M , DENG Y-Q , TIAN P F ,et al . Dynamic active sites over binary oxide catalysts: In situ/operando spectroscopic study of low-temperature CO oxidation over MnO x -CeO2 catalysts[J]. Applied Catalysis B: Environmental,2016,191: 179-191. |
19 | ANDANSON J M , BAIKER A . Exploring catalytic solid/liquid interfaces by in situ attenuated total reflection infrared spectroscopy[J]. Chem. Soc. Rev.,2010,39(12): 4571-4584. |
20 | ALMEIDA A R , MOULIJN J A , MUL G . Photocatalytic oxidation of cyclohexane over TiO2: evidence for a Mars-van Krevelen mechanism[J]. The Journal of Physical Chemistry C,2011,115(4): 1330-1338. |
21 | DU P , MOULIJN J A , MUL G . Selective photo(catalytic)-oxidation of cyclohexane: effect of wavelength and TiO2 structure on product yields[J]. Journal of Catalysis,2006,238(2): 342-352. |
22 | HOFFMANN F M . Infrared reflection-absorption spectroscopy of adsorbed molecules[J]. Surface Science Reports,1983,3(2): 107-192. |
23 | HOLLINS P , PRITCHARD J . Infrared studies of chemisorbed layers on single crystals[J]. Progress in Surface Science,1985,19(4): 275-349. |
24 | TILEKARATNE A , SIMONOVIS J P , LÓPEZ FAGúNDEZ M F ,et al . Operando studies of the catalytic hydrogenation of ethylene on Pt(111) single crystal surfaces[J]. ACS Catalysis,2012,2(11): 2259-2268. |
25 | 吴征铠 . 拉曼光谱的发现和最近的发展[J]. 光谱学与光谱分析,1983(2): 65-71. |
WU Zhenkai . The discovery and the recent development of Raman spectroscopy[J]. Spectroscopy and Spectral Analysis, 1983(2): 65-71. | |
26 | 李灿,李美俊 . 拉曼光谱在催化研究中应用的进展[J]. 分子催化,2003(3): 213-240. |
LI Can , LI Meijun . Progress in the application of Raman spectroscopy in catalysis[J]. Journal of Molecular Catalysis(China),2003,3: 213-240. | |
27 | FU D , DAI W , XU X ,et al . Probing the structure evolution of iron-based Fischer-Tropsch to produce olefins by operando Raman spectroscopy[J]. ChemCatChem,2015,7(5): 752-756. |
28 | ZHANG Y , FU D , LIU X , et al . Operando spectroscopic study of dynamic structure of iron oxide catalysts during CO2 hydrogenation[J]. ChemCatChem,2018,10(6): 1272-1276. |
29 | XIONG G , FENG Z , LI J ,et al . UV resonance Raman spectroscopic studies on the genesis of highly dispersed surface molybdate species on γ-alumina[J]. The Journal of Physical Chemistry B,2000,104(15): 3581-3588. |
30 | WU Z , ZHANG C , STAIR P C . Influence of absorption on quantitative analysis in Raman spectroscopy[J]. Catalysis Today,2006,113(1): 40-47. |
31 | JIN S , FENG Z , FAN F ,et al . UV Raman spectroscopic characterization of catalysts and catalytic active sites[J]. Catalysis Letters,2015,145(1): 468-481. |
32 | BORDIGA S , DAMIN A , BONINO F ,et al . The structure of the peroxo species in the TS-1 catalyst as investigated by resonant Raman spectroscopy[J]. Angewandte Chemie,2002,114(24): 4928-4931. |
33 | GUO Q , SUN K , FENG Z ,et al . A thorough investigation of the active titanium species in TS-1 zeolite by in situ UV resonance Raman spectroscopy[J]. Chemistry A: European Journal,2012,18(43): 13854-13860. |
34 | PATLOLLA A , CARINO E V , EHRLICH S N ,et al . Application of operando XAS,XRD,and Raman spectroscopy for phase speciation in water gas shift reaction catalysts[J]. ACS Catalysis,2012,2(11): 2216-2223. |
35 | 张玉龙,邵光印,张征湃,等 . 活化气氛对CO2加氢制取低碳烯烃Fe-K催化剂构-效关系[J]. 化工学报,2018,69(2): 690-698. |
ZHANG Yulong , SHAO Guangyin , ZHANG Zhengpai ,et al . Activation atmospheres on structure-performance relationship of K-promoted Fe catalysts for lower olefin synthesis from CO2 hydrogenation[J]. CIESC Journal, 2018, 69(2): 690-698. | |
36 | CHEN J Y C , DANG L , LIANG H ,et al . Operando analysis of NiFe and Fe oxyhydroxide electrocatalysts for water oxidation: detection of Fe4+ by Mössbauer spectroscopy[J]. Journal of the American Chemical Society,2015,137(48): 15090-15093. |
37 | BORDIGA S , GROPPO E , AGOSTINI G ,et al . Reactivity of surface species in heterogeneous catalysts probed by in situ X-ray absorption techniques[J]. Cheminform,2013,44(20): 1736-1850. |
38 | RODRIGUEZ J A , HANSON J C , CHUPAS P J . In-situ characterization of heterogeneous catalysts[J]. Focus on Catalysts,2013(12): 8. |
39 | CHOI Y W , MISTRY H , CUENYA B R . New insights into working nanostructured electrocatalysts through operando spectroscopy and microscopy[J]. Current Opinion in Electrochemistry,2017,1(1): 95-103. |
40 | FEHSE M , MONCONDUIT L , FISCHER F ,et al . Study of the insertion mechanism of lithium into anatase by operando X-ray diffraction and absorption spectroscopy[J]. Solid State Ionics,2014,268: 252-255. |
41 | YE Y F , WU C H , ZHANG L ,et al . Using soft X-ray absorption spectroscopy to characterize electrode/electrolyte interfaces in-situ and operando [J]. Journal of Electron Spectroscopy & Related Phenomena,2017, 221: 2-9. |
42 | BUGAEV A L , GUDA A A , LAZZARINI A ,et al . In situ formation of hydrides and carbides in palladium catalyst: when XANES is better than EXAFS and XRD[J]. Catalysis Today,2017,283: 119-126. |
43 | BOUBNOV A , CARVALHO H W P , DORONKIN D E ,et al . Selective catalytic reduction of NO over Fe-ZSM-5: mechanistic insights by operando HERFD-XANES and valence-to-core X-ray emission spectroscopy[J]. Journal of the American Chemical Society,2014,136(37): 13006-13015. |
44 | KE J , ZHU W , JIANG Y ,et al . Strong local coordination structure effects on subnanometer PtO x clusters over CeO2 nanowires probed by low-temperature CO oxidation[J]. ACS Catalysis,2015,5(9): 5164-5173. |
45 | STARR D E , LIU Z , HAVECKER M , et al . Investigation of solid/vapor interfaces using ambient pressure X-ray photoelectron spectroscopy[J]. Chemical Society Reviews,2013,42(13): 5833-5857. |
46 | MACIÁ-AGULLÓ J A , CAZORLA-AMORÓS D , LINARES-SOLANO A ,et al . Oxygen functional groups involved in the styrene production reaction detected by quasi in situ XPS[J]. Catalysis Today,2005,102/103: 248-253. |
47 | DIVINS N J , ANGURELL I , ESCUDERO C ,et al . Nanomaterials. Influence of the support on surface rearrangements of bimetallic nanoparticles in real catalysts[J]. Science,2014,346(6209): 620-623. |
48 | DIVINS N J , LLORCA J . In situ photoelectron spectroscopy study of ethanol steam reforming over RhPd nanoparticles and RhPd/CeO2 [J]. Applied Catalysis A: General, 2016, 518: 60-66. |
49 | WOLFBEISSER A , KOVÁCS G , KOZLOV S M ,et al . Surface composition changes of CuNi-ZrO2 during methane decomposition: an operando NAP-XPS and density functional study[J]. Catalysis Today,2017,283: 134-143. |
50 | BENTRUP U . Combining in situ characterization methods in one set-up: looking with more eyes into the intricate chemistry of the synthesis and working of heterogeneous catalysts[J]. Chem. Soc. Rev.,2010,39(12): 4718-4730. |
51 | GOETZE J , YARULINA I , GASCON J ,et al . Revealing lattice expansion of small-pore zeolite catalysts during the methanol-to-olefins process using combined operando X-ray diffraction and UV-vis spectroscopy[J]. ACS Catalysis,2018,8(3): 2060-2070. |
52 | CATS K H , WECKHUYSEN B M . Combined operando X-ray diffraction/Raman spectroscopy of catalytic solids in the laboratory: the Co/TiO2 Fischer-Tropsch synthesis catalyst showcase[J]. ChemCatChem,2016,8(8): 1531-1542. |
53 | YAO S , MUDIYANSELAGE K , XU W ,et al . Unraveling the dynamic nature of a CuO/CeO2 catalyst for CO oxidation in operando: a combined study of XANES (fluorescence) and DRIFTS[J]. ACS Catalysis,2014,4(6): 1650-1661. |
54 | TINNEMANS S J , MESU J G , KERVINEN K ,et al . Combining operando techniques in one spectroscopic-reaction cell: new opportunities for elucidating the active site and related reaction mechanism in catalysis[J]. Catalysis Today,2006,113(1): 3-15. |
55 | BRüCKNER A , SCHOLZ G , HEIDEMANN D ,et al . Structural evolution of H4PVMo11O40⋅xH2O during calcination and isobutane oxidation: new insights into vanadium sites by a comprehensive in situ approach[J]. J. Catal.,2007,245(2): 369-380. |
56 | BRUCKNER A . Killing three birds with one stone-simultaneous operando EPR/UV-vis/Raman spectroscopy for monitoring catalytic reactions[J]. Chem Commun.,2005,13: 1761-1763. |
57 | BRÜCKNER A , KONDRATENKO E . Simultaneous operando EPR/UV-vis/laser-Raman spectroscopy — A powerful tool for monitoring transition metal oxide catalysts during reaction[J]. Catal Today,2006,113(1): 16-24. |
58 | VÉLEZ R P , ELLMERS I , HUANG H ,et al . Identifying active sites for fast NH3-SCR of NO/NO2 mixtures over Fe-ZSM-5 by operando EPR and UV-vis spectroscopy[J]. Journal of Catalysis,2014,316(3): 103-111. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[6] | 张杰, 白忠波, 冯宝鑫, 彭肖林, 任伟伟, 张菁丽, 刘二勇. PEG及其复合添加剂对电解铜箔后处理的影响[J]. 化工进展, 2023, 42(S1): 374-381. |
[7] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[8] | 许家珩, 李永胜, 罗春欢, 苏庆泉. 甲醇水蒸气重整工艺的优化[J]. 化工进展, 2023, 42(S1): 41-46. |
[9] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[10] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[11] | 赵景超, 谭明. 表面活性剂对电渗析减量化工业含盐废水的影响[J]. 化工进展, 2023, 42(S1): 529-535. |
[12] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[13] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[14] | 盛维武, 程永攀, 陈强, 李小婷, 魏嘉, 李琳鸽, 陈险峰. 微气泡和微液滴双强化脱硫反应器操作分析[J]. 化工进展, 2023, 42(S1): 142-147. |
[15] | 黄益平, 李婷, 郑龙云, 戚傲, 陈政霖, 史天昊, 张新宇, 郭凯, 胡猛, 倪泽雨, 刘辉, 夏苗, 主凯, 刘春江. 三级环流反应器中气液流动与传质规律[J]. 化工进展, 2023, 42(S1): 175-188. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |