化工进展 ›› 2019, Vol. 38 ›› Issue (05): 2243-2253.DOI: 10.16085/j.issn.1000-6613.2018-1090
收稿日期:
2018-05-28
修回日期:
2018-09-13
出版日期:
2019-05-05
发布日期:
2019-05-05
通讯作者:
李凤祥
作者简介:
<named-content content-type="corresp-name">薛雯丹</named-content>(1993—),女,博士研究生,研究方向为纳米结构功能材料与环境生物电化学。|李凤祥,博士,讲师,从事水污染控制工程、生物质能源化、废水生态毒理及修复研究。E-mail: <email>lifx@nankai.edu.cn</email>。
基金资助:
Wendan XUE,Xuya ZHU,Qixing ZHOU,Fengxiang LI()
Received:
2018-05-28
Revised:
2018-09-13
Online:
2019-05-05
Published:
2019-05-05
Contact:
Fengxiang LI
摘要:
气体分离在石油化工和化工生产中有非常重要的作用。沸石咪唑酯骨架(ZIFs)作为一种新型的多孔材料,具有大比表面积、高孔隙率、多样的结构组成和超高的热稳定及化学稳定性,成为该领域的研究热点。本文围绕ZIFs材料的合成展开,详尽地总结了现阶段ZIFs在气体吸附分离领域的应用,重点介绍ZIFs在工业CO2捕获及分离、轻质烃分离、气相色谱分离、用于气体分离的ZIFs基膜、惰性气体分离和有毒气体分离等行业的研究进展。同时指出,ZIFs材料在气体吸附分离领域的应用仍需要进一步研究,如新型低成本配体的开发、探索更多的合成方法来调整晶体结构、提升ZIFs材料的吸附效率,才能使ZIFs从实验室走向工业化。
中图分类号:
薛雯丹, 朱绪娅, 周启星, 李凤祥. 沸石咪唑酯骨架材料合成及其在气体吸附分离领域的研究进展[J]. 化工进展, 2019, 38(05): 2243-2253.
Wendan XUE, Xuya ZHU, Qixing ZHOU, Fengxiang LI. Synthesis of the zeolitic imidazole frameworks (ZIFs) and the research progress in gas adsorption and separation[J]. Chemical Industry and Engineering Progress, 2019, 38(05): 2243-2253.
名称 | 拓扑结构 | 沸石结构 | 金属原子密度(T/V) /nm-3 | 孔径d a /? | 笼径d p /? |
---|---|---|---|---|---|
ZIF-7 | sod | SOD | 2.49 | 2.9 | 4.31 |
ZIF-8 | sod | SOD | 2.45 | 3.4 | 11.6 |
ZIF-9 | sod | SOD | 2.51 | 3.9 | 4.31 |
ZIF-10 | mer | MER | 2.25 | 8.2 | 12.2 |
ZIF-11 | rho | RHO | 2.02 | 3.0 | 14.6 |
ZIF-12 | rho | RHO | 2.02 | 3.0 | 14.6 |
ZIF-20 | lta | LTA | 2.04 | 2.8 | 15.4 |
ZIF-22 | lta | LTA | 2.02 | 2.9 | 14.8 |
ZIF-60 | mer | MER | 2.24 | 7.2 | 9.4 |
ZIF-65 | sod | SOD | 2.33 | 3.4 | 10.4 |
ZIF-67 | sod | SOD | 2.46 | 3.4 | 11.6 |
ZIF-68 | gme | GME | 2.11 | 7.5 | 10.3 |
ZIF-69 | gme | GME | 2.10 | 4.4 | 7.8 |
ZIF-70 | gme | GME | 2.11 | 13.1 | 15.9 |
ZIF-76 | lta | LTA | 1.03 | 5.4 | 12.2 |
ZIF-78 | gme | GME | 2.08 | 3.8 | 7.1 |
ZIF-79 | gme | GME | 2.10 | 4.0 | 7.5 |
ZIF-80 | gme | GME | 2.07 | 9.8 | 13.2 |
ZIF-81 | gme | GME | 2.08 | 3.9 | 7.4 |
ZIF-82 | gme | GME | 2.09 | 8.1 | 12.3 |
ZIF-90 | sod | SOD | 2.33 | 3.5 | 11.2 |
ZIF-91 | sod | SOD | 2.33 | 3.2 | 11 |
ZIF-92 | sod | SOD | 2.33 | 0 | 5.2 |
ZIF-95 | poz | — | 1.51 | 3.7 | 24 |
ZIF-100 | moz | — | 1.29 | 3.4 | 35.6 |
表1 不同结构的ZIFs材料
名称 | 拓扑结构 | 沸石结构 | 金属原子密度(T/V) /nm-3 | 孔径d a /? | 笼径d p /? |
---|---|---|---|---|---|
ZIF-7 | sod | SOD | 2.49 | 2.9 | 4.31 |
ZIF-8 | sod | SOD | 2.45 | 3.4 | 11.6 |
ZIF-9 | sod | SOD | 2.51 | 3.9 | 4.31 |
ZIF-10 | mer | MER | 2.25 | 8.2 | 12.2 |
ZIF-11 | rho | RHO | 2.02 | 3.0 | 14.6 |
ZIF-12 | rho | RHO | 2.02 | 3.0 | 14.6 |
ZIF-20 | lta | LTA | 2.04 | 2.8 | 15.4 |
ZIF-22 | lta | LTA | 2.02 | 2.9 | 14.8 |
ZIF-60 | mer | MER | 2.24 | 7.2 | 9.4 |
ZIF-65 | sod | SOD | 2.33 | 3.4 | 10.4 |
ZIF-67 | sod | SOD | 2.46 | 3.4 | 11.6 |
ZIF-68 | gme | GME | 2.11 | 7.5 | 10.3 |
ZIF-69 | gme | GME | 2.10 | 4.4 | 7.8 |
ZIF-70 | gme | GME | 2.11 | 13.1 | 15.9 |
ZIF-76 | lta | LTA | 1.03 | 5.4 | 12.2 |
ZIF-78 | gme | GME | 2.08 | 3.8 | 7.1 |
ZIF-79 | gme | GME | 2.10 | 4.0 | 7.5 |
ZIF-80 | gme | GME | 2.07 | 9.8 | 13.2 |
ZIF-81 | gme | GME | 2.08 | 3.9 | 7.4 |
ZIF-82 | gme | GME | 2.09 | 8.1 | 12.3 |
ZIF-90 | sod | SOD | 2.33 | 3.5 | 11.2 |
ZIF-91 | sod | SOD | 2.33 | 3.2 | 11 |
ZIF-92 | sod | SOD | 2.33 | 0 | 5.2 |
ZIF-95 | poz | — | 1.51 | 3.7 | 24 |
ZIF-100 | moz | — | 1.29 | 3.4 | 35.6 |
应用 | 涉及气体成分 |
---|---|
家庭医用富氧空气(N2/O2分离) | O2、N2、CO2、H2O及惰性气体 |
从甲烷气体中提取CO2、CO和H2 | CO2、CO、H2、CH4、N2及H2O |
从炼油厂尾气生产H2(分离H2和H2O,C1~C5烷烃和烯烃) | H2和H2O,C1~C5烷烃和烯烃 |
合成气中回收H2(CO/H2分离) | H2和CO |
溶剂蒸汽回收(H2O、氯氟烃、醇、酮、BTX和N2) | CH4、CO2、N2、O2和氯氟烃 |
垃圾填埋气中CH4和CO2的回收(CO2/CH4分离) | CH4、CO2、N2、O2和氯氟烃 |
天然气脱硫及燃料运输 | H2S、COS、N2、H2、CH4、CO2、H2O、有机硫化物 |
挥发性有机化合物(VOCs)去除 | BTX、乙苯、醇类、酮类、氯代烃类、N2、H2O等有机蒸汽 |
工业气体干燥、H2O去除 | H2O、N2、CH4、CO2、醇、氯代碳氟化合物 |
空气制动干燥、H2O去除 | H2O、CO2、N2、O2、Ar |
电子气体净化 | O2、N2、CO、CO2、NF3、N2F6、SF6、CF4、C2F6 |
石蜡分离(正构烷烃与异链烷烃、芳烃的分离) | 各种石蜡,异链烷烃、芳烃 |
二甲苯分离 | p-二甲苯、o-二甲苯、m-二甲苯、乙苯 |
从高炉煤气中除去CO2 | CO2、N2、O2、CO、NO x 、SO2、C x H y 、HCl; CO2、C x H y 、H2S、N2和He |
烟道气捕获CO2 | CO2、N2、O2、CO、NO x 、SO2、C x H y 、HCl |
CO2/CH4和N2/CH4分离用于天然气提质 | CH4、N2、CO2、C2H6、C3H8、C4H10、H2S和He |
在核相关产业废气处理,NO x 去除和Xe纯化 | I2、Kr、NO x 、Xe |
从天然气或空气中分离He | He、N2、O2、CO2、H2O;He、CH4、CO2、N2 |
气体分离中Ne、Ar、Kr和Xe的分离或合成氨弛放气 | Ne、Ar、Ke、Xe、N2、O2、CO2、H2O;Ne、Ar、Ke、Xe、H2、N2、CH4、NH3 |
从金属氢化物、碳氢化合物和酸性气体中去除硅烷 | SiH4和一些碳氢化合物或酸性气体(如CO2、H2S和COS) |
烟气净化(去除烟气中的SO2、NO x 和HCl) | SO2、NO x 、HCl、N2、CO2、O2、CO和C x H y |
除去微量的NH3 | NH3等气体 |
酒精脱水 | H2O和乙醇 |
从烯烃中去除二烯烃 | 二烯烃和烯烃 |
烯烃分离 | 各种烯烃 |
石蜡/烯烃分离 | C2H4和C2H6;C3H6和C3H8 |
从天然气中分离CO2和C2H4 | CO2、C2H4、CH4、C2H6、C3H8、C4H10、H2S、N2、He |
气体同位素分离 | H2、D2和T2;He和4He |
表2 不同应用过程需要分离的气体成分[32]
应用 | 涉及气体成分 |
---|---|
家庭医用富氧空气(N2/O2分离) | O2、N2、CO2、H2O及惰性气体 |
从甲烷气体中提取CO2、CO和H2 | CO2、CO、H2、CH4、N2及H2O |
从炼油厂尾气生产H2(分离H2和H2O,C1~C5烷烃和烯烃) | H2和H2O,C1~C5烷烃和烯烃 |
合成气中回收H2(CO/H2分离) | H2和CO |
溶剂蒸汽回收(H2O、氯氟烃、醇、酮、BTX和N2) | CH4、CO2、N2、O2和氯氟烃 |
垃圾填埋气中CH4和CO2的回收(CO2/CH4分离) | CH4、CO2、N2、O2和氯氟烃 |
天然气脱硫及燃料运输 | H2S、COS、N2、H2、CH4、CO2、H2O、有机硫化物 |
挥发性有机化合物(VOCs)去除 | BTX、乙苯、醇类、酮类、氯代烃类、N2、H2O等有机蒸汽 |
工业气体干燥、H2O去除 | H2O、N2、CH4、CO2、醇、氯代碳氟化合物 |
空气制动干燥、H2O去除 | H2O、CO2、N2、O2、Ar |
电子气体净化 | O2、N2、CO、CO2、NF3、N2F6、SF6、CF4、C2F6 |
石蜡分离(正构烷烃与异链烷烃、芳烃的分离) | 各种石蜡,异链烷烃、芳烃 |
二甲苯分离 | p-二甲苯、o-二甲苯、m-二甲苯、乙苯 |
从高炉煤气中除去CO2 | CO2、N2、O2、CO、NO x 、SO2、C x H y 、HCl; CO2、C x H y 、H2S、N2和He |
烟道气捕获CO2 | CO2、N2、O2、CO、NO x 、SO2、C x H y 、HCl |
CO2/CH4和N2/CH4分离用于天然气提质 | CH4、N2、CO2、C2H6、C3H8、C4H10、H2S和He |
在核相关产业废气处理,NO x 去除和Xe纯化 | I2、Kr、NO x 、Xe |
从天然气或空气中分离He | He、N2、O2、CO2、H2O;He、CH4、CO2、N2 |
气体分离中Ne、Ar、Kr和Xe的分离或合成氨弛放气 | Ne、Ar、Ke、Xe、N2、O2、CO2、H2O;Ne、Ar、Ke、Xe、H2、N2、CH4、NH3 |
从金属氢化物、碳氢化合物和酸性气体中去除硅烷 | SiH4和一些碳氢化合物或酸性气体(如CO2、H2S和COS) |
烟气净化(去除烟气中的SO2、NO x 和HCl) | SO2、NO x 、HCl、N2、CO2、O2、CO和C x H y |
除去微量的NH3 | NH3等气体 |
酒精脱水 | H2O和乙醇 |
从烯烃中去除二烯烃 | 二烯烃和烯烃 |
烯烃分离 | 各种烯烃 |
石蜡/烯烃分离 | C2H4和C2H6;C3H6和C3H8 |
从天然气中分离CO2和C2H4 | CO2、C2H4、CH4、C2H6、C3H8、C4H10、H2S、N2、He |
气体同位素分离 | H2、D2和T2;He和4He |
1 | 刘志强, 黄永清, 孙为银 . 金属有机框架化合物对溶剂分子和有机小分子荧光识别与传感研究进展[J].无机化学学报, 2017,33 (11): 1959-1969. |
LIU Zhiqiang , HUANG Yongqing , SUN Weiyin . Progress in fluorescent recognition and sensing of solvent and small organic molecules based on metal-organic frameworks[J]. Chinese Journal of Inorganic Chemistry, 2017,33 (11): 1959-1969. | |
2 | STOCK N , BISWAS S . Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites[J]. Chemical Reviews, 2012, 112(2): 933-969. |
3 | KYO S P, ZHENG N , ADRIEN P , et al . Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(27): 10186. |
4 | ASSFOUR B , LEONI S , SEIFERT G . Hydrogen adsorption sites in zeolite imidazolate frameworks ZIF-8 and ZIF-11[J]. Journal of Physical Chemistry C, 2010, 114(31): 13381-13384. |
5 | RYAN L , MICHELLE E , JOSHUA A , et al . Ethanol and water adsorption in methanol-derived ZIF-71[J]. Chemical Communications, 2011, 47(30): 8667-8669. |
6 | KROKIDAS P , CASTIER M , ECONOMOU G . Computational study of ZIF-8 and ZIF-67 performance for separation of gas mixtures[J]. Journal of Physical Chemistry C, 2017, 121(33): 17999-18011. |
7 | YANG Qihao , XU Qiang , YU Shuhong , et al . Pd nanocubes@ZIF-8: integration of plasmon-driven photothermal conversion with a metal-organic framework for efficient and selective catalysis[J]. Angewandte Chemie, 2016, 55(11): 3685. |
8 | CLINE C , SANDRINE L , DELPHINE B , et al . Catalysis of transesterification by a nonfunctionalized metal-organic framework: acido-basicity at the external surface of ZIF-8 probed by FTIR andab initiocalculations[J]. Journal of the American Chemical Society, 2010, 132(35): 12365-12377. |
9 | YANG Juan , YE Huili , ZHAO Faqiong , et al . A novel Cu x O nanoparticles@ZIF-8 composite derived from core-shell metal-organic frameworks for highly selective electrochemical sensing of hydrogen peroxide[J]. ACS Applied Materials & Interfaces, 1944, 8(31): 20407-20414. |
10 | HU Huiping , LIU Shengquan , CHEN Chunyan , et al . Two novel zeolitic imidazolate frameworks(ZIFs) as sorbents for solid-phase extraction (SPE) of polycyclic aromatic hydrocarbons(PAHs) in environmental water samples[J]. Analyst, 2014, 139(22): 5818-5826. |
11 | LI Shengwen , ZHANG Haimin , ZHAO Qian , et al . Metal-organic framework derived nitrogen-doped porous carbon@graphene sandwich-like structured composites as bifunctional electrocatalysts for oxygen reduction and evolution reactions[J]. Carbon, 2016, 106: 74-83. |
12 | RAHUL B , ANH P, WANG Bo , et al . High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture[J]. Science, 2008, 319(5865): 939-943. |
13 | LI HI , MOHAMED E , MICHAEL K , et al . Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999, 402(6759): 276-279. |
14 | Yu-ri LEE , Min-seok JANG , Hye-young CHO , et al . ZIF-8: a comparison of synthesis methods[J]. Chemical Engineering Journal, 2015, 271: 276-280. |
15 | JAMES W , CRISTINA G , ANDREA M , et al . The growth of high density network of MOF nano-crystals across macroporous metal substrates-solvothermal synthesis versus rapid thermal deposition[J]. Applied Surface Science, 2018, 427: 401-408. |
16 | BAO Qilong , LOU Yongbing , XING Tiantian , et al . Rapid synthesis of zeolitic imidazolate framework-8(ZIF-8) in aqueous solution via microwave irradiation[J]. Inorganic Chemistry Communications, 2013, 37: 170-173. |
17 | BHATTACHARJEE S , M-S JANG , H-J KWON , et al . Zeolitic imidazolate frameworks: synthesis, functionalization, and catalytic/adsorption applications[J]. Catalysis Surveys from Asia, 2014, 18(4): 101-127. |
18 | PAN Yichang , LAI Zhiping . Sharp separation of C2/C3 hydrocarbon mixtures by zeolitic imidazolate framework-8(ZIF-8) membranes synt.hesized in aqueous solutions[J]. Chemical Communications, 2011, 47(37): 10275-10277 |
19 | YU Jongsung , Sukbon YOON , Yunjo LEE , et al . Fabrication of bimodal porous silicate with silicalite-1 core/mesoporous shell structures and synthesis of nonspherical carbon and silica nanocases with hollow core/mesoporous shell structures[J]. Journal of Physical Chemistry B, 2005, 109(15): 7040-7045. |
20 | BUTOVA V V , BUDNYK A P , BULANOVA E A , et al . Hydrothermal synthesis of high surface area ZIF-8 with minimal use of TEA[J]. Solid State Sciences, 2017, 69: 13-21. |
21 | SARA S , BEATRIZ Z , CARLOS T , et al . Ordered mesoporous silica-(ZIF-8) core-shell spheres[J]. Chemical Communications, 2012, 48(75): 9388-9390. |
22 | CHEN Y , YANG C Y , WANG X Q , et al . Vapor phase solvents loaded in zeolite as the sustainable medium for the preparation of Cu-BTC and ZIF-8[J]. Chemical Engineering Journal, 2017, 313: 179-186. |
23 | XIE Jiangkun , YAN Naiqiang , LIU Fei , et al . CO2 adsorption performance of ZIF-7 and its endurance in flue gas components[J]. Frontiers of Environmental Science & Engineering, 2014, 8(2): 162-168. |
24 | HARA N , YOSHIMUNE M , NEGISHI H , et al . Diffusive separation of propylene/propane with ZIF-8 membranes[J]. Journal of Membrane Science, 2014, 450: 215-223. |
25 | MARTI A M , VAN M, BALKUS K J . Tuning the crystal size and morphology of the substituted imidazole material, SIM-1[J]. Journal of Porous Materials, 2014, 21(6): 889-902. |
26 | 李歆, 梁淑, 君翟燕, 等 . 微波辅助加热法制备ZIF-8工艺研究[J]. 化工新型材料, 2017, 45(10): 145-147. |
LI Xin , LIANG Shu , Zhaiyan JUN , et al . Research of ZIF-8 synthesized by microwave assisted heating method[J]. New Chemical Materials, 2017, 45(10): 145-147. | |
27 | Hye-young CHO , Jun KIM , Se-na KIM , et al . High yield 1-L scale synthesis of ZIF-8 via a sonochemical route[J]. Microporous and Mesoporous Materials, 2013, 169: 180-184. |
28 | MORRIS W , DOONAN C J , FURUKAWA H , et al . Crystals as molecules: postsynthesis covalent functionalization of zeolitic imidazolate frameworks[J]. Journal of the American Chemical Society, 2008, 130(38): 12626-12627. |
29 | XU Gengsheng , YAO Jianfeng , WANG Kun , et al . Preparation of ZIF-8 membranes supported on ceramic hollow fibers from a concentrated synthesis gel[J]. Journal of Membrane Science, 2011, 385/386: 187-193. |
30 | HUO Qisheng , FENG Shouhua , XU Ruren . Study on synthesis of silica zeolite molecular sieves in non-aqueous media[J]. Acta Chimica Sinica, 1990, 48(7): 639-643. |
31 | JANOSCH C , SIMON M , LOHMEIER S , et al . Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework[J]. Chemistry of Materials, 2009, 21(8): 1410-1412. |
32 | JOHN L , ANNABELLE B , PAULINA J , et al . Virtual high throughput screening confirmed experimentally: porous coordination polymer hydration[J]. Journal of the American Chemical Society, 2009, 131(43): 15834-15842. |
33 | AGUADO S , BERGERET G , TITUS M , et al . Guest-induced gate-opening of a zeolite imidazolate framework[J]. New Journal of Chemistry, 2011, 35(3): 546-550. |
34 | LI J R , KUPPLER R , ZHOU H C . Selective gas adsorption and separation in metal-organic frameworks[J]. Chemcial Society Review, 2009, 38(5): 1477-1504. |
35 | BANERJEE R , FURUKAWA H , BRITT D , et al . Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties[J]. Journal of the American Chemical Society, 2009, 131(11): 3875-3877. |
36 | LI Bo , WEI Shihao , CHEN Liang . Molecular simulation of CO2, N2 and CH4 adsorption and separation in ZIF-78 and ZIF-79[J]. Molecular Simulation, 2011, 37(13): 1131-1142. |
37 | KROKIDAS P , CASTIER M , MANCHO S , et al . Molecular simulation studies of the diffusion of methane, ethane, propane, and propylene in ZIF-8[J]. The Journal of Physical Chemistry C, 2015, 119(48): 27028-27037. |
38 | WU Ying , CHEN Huiyong , LIU Defei , et al . Adsorption and separation of ethane/ethylene on ZIFs with various topologies: combining GCMC simulation with the ideal adsorbed solution theory (IAST) [J]. Chemical Engineering Science, 2015, 124: 144-153. |
39 | MAGDYSYUK O , ADAMS F , LIERMANN P , et al . Understanding the adsorption mechanism of noble gases Kr and Xe in CPO-27-Ni, CPO-27-Mg, and ZIF-8[J]. Physical Chemistry Chemical Physics Pccp, 2014, 16(43): 23908-23914. |
40 | PARKES M , DEMIR H , TEICH-MCGOLDRICK S L , et al . Molecular dynamics simulation of framework flexibility effects on noble gas diffusion in HKUST-1 and ZIF-8[J]. Microporous and Mesoporous Materials, 2014, 194: 190-199. |
41 | LI Y S , LIANG F Y , BUX H, et al . Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation[J]. Journal of Membrane Science, 2010, 354(1): 48-54. |
42 | XU Pengcheng , YU Haitao , XU Tao , et al . MOF nano-crystals of ZIF-8 identified as ambient NO2 gas absorbent by using resonant micro-cantilever experiment[C]// Las Vegas, NV, USA: In 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS), 2017. |
43 | SACHIN N , KAI C, VIVEK U , et al . Capture of harmful radioactive contaminants from off-gas stream using porous solid sorbents for clean environment—A review[J]. Chemical Engineering Journal, 2016, 306: 369-381. |
44 | MATTHEW L , WU T J , SHEN L J , et al . Effects of molecular sieving and electrostatic enhancement in the adsorption of organic compounds on the zeolitic imidazolate framework ZIF-8[J]. Langmuir, 2010, 26(19): 15625-15633. |
45 | PERRE S V D ,BOZBIYIKB, LANNOEYE J ,et al . Experimental study of adsorptive interactions of polar and nonpolar adsorbates in the zeolitic imidazolate framework ZIF-68 via pulse gas chromatography[J]. The Journal of Physical Chemistry C, 2015, 119(4): 1832-1839. |
46 | MITTERMULLER M , VOLMER D . Micro- and nanostructures and their application in gas chromatography[J]. Analyst, 2012, 137(14): 3195-3201. |
47 | HUANG A S , DOU W , CARO J . Steam-stable zeolitic imidazolate framework ZIF-90 membrane with hydrogen selectivity through covalent functionalization[J]. Journal of the American Chemical Society, 2010, 132(44): 15562-15564. |
48 | BUX H, LIANG Fangyi , LI Yanshou . Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis[J]. Journal of the American Chemical Society, 2009, 131(44): 16000-16001. |
49 | HUANG A S , BUX H, STEINBACH F , et al . Molecular-sieve membrane with hydrogen permselectivity: ZIF-22 in LTA topology prepared with 3-aminopropyltriethoxysilane as covalent linker[J]. Angewandte Chemie, 2010, 49(29): 4958-4961. |
50 | PAN YC , LI T , LESTARI G , et al . Effective separation of propylene/propane binary mixtures by ZIF-8 membranes[J]. Journal of Membrane Science, 2012, 390/391: 93-98. |
51 | PAN Yichang , LIU Yunyang , ZENG Gaofeng , et al . Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system[J]. Chemical Communications, 2011, 47(7): 2071-2073. |
[1] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[2] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[3] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[4] | 赵巍, 赵德银, 李世瀚, 刘洪达, 孙进, 郭艳秋. 三嗪型天然气管道缓蚀型减阻剂合成与应用[J]. 化工进展, 2023, 42(S1): 391-399. |
[5] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[6] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[7] | 李世霖, 胡景泽, 王毅霖, 王庆吉, 邵磊. 电渗析分离提取高值组分的研究进展[J]. 化工进展, 2023, 42(S1): 420-429. |
[8] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[9] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[10] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[11] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[12] | 贺美晋. 分子管理在炼油领域分离技术中的应用和发展趋势[J]. 化工进展, 2023, 42(S1): 260-266. |
[13] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[14] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[15] | 廖志新, 罗涛, 王红, 孔佳骏, 申海平, 管翠诗, 王翠红, 佘玉成. 溶剂脱沥青技术应用与进展[J]. 化工进展, 2023, 42(9): 4573-4586. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |