化工进展 ›› 2019, Vol. 38 ›› Issue (01): 516-528.DOI: 10.16085/j.issn.1000-6613.2018-0918
收稿日期:
2018-05-04
修回日期:
2018-07-03
出版日期:
2019-01-05
发布日期:
2019-01-05
通讯作者:
刘昌俊
作者简介:
周昕瞳(1989—),男,博士研究生。E-mail:<email>xintongzhou@tju.edu.cn</email>。|刘昌俊,教授,博士生导师,研究方向为化学工艺。E-mail:<email>coronacj@tju.edu.cn</email>。
基金资助:
Xintong ZHOU(),Zhenxing LIU,Changjun LIU()
Received:
2018-05-04
Revised:
2018-07-03
Online:
2019-01-05
Published:
2019-01-05
Contact:
Changjun LIU
摘要:
3D打印是一种快速成型技术,该技术在催化和吸附材料制备领域的应用目前已受到广泛重视。3D打印技术一方面能够拓展整体式催化/吸附材料的涵盖范围,实现材料的宏观结构优化和活性组分控制,同时有利于强化催化和吸附过程中的传质/传热过程,而且操作灵活,可靠性强,因此适于工业生产和实验室研究。本文介绍了催化/吸附材料制备过程中常见的几种3D打印技术,同时从打印策略和打印材料方面入手,综述了目前3D打印技术在催化和吸附领域的各项应用,并由此指出,目前3D打印技术可以将聚合物、碳材料、金属及金属氧化物、分子筛等材料纳入到整体式催化体系中,通过对材料结构和分布的控制对其催化和吸附性能进行影响,因此3D打印在催化和吸附材料制备领域的应用有着广阔的前景。同时指出材料微观结构控制、打印耗材及流程的标准化,以及以计算为依托的催化/吸附材料的整体式结构和活性位点分布控制是今后的研究重点。
中图分类号:
周昕瞳, 刘振星, 刘昌俊. 3D打印在催化和吸附材料制备领域的应用[J]. 化工进展, 2019, 38(01): 516-528.
Xintong ZHOU, Zhenxing LIU, Changjun LIU. Three-dimensional printing for the preparation of catalyst and adsorbent[J]. Chemical Industry and Engineering Progress, 2019, 38(01): 516-528.
打印方法 | 类型 | 适用材料 |
---|---|---|
熔融沉积成型(FDM) | 挤出成型 | 热塑性塑料、 共晶系统金属等 |
直写成型(DIW) | 挤出成型 | 塑料、 陶瓷、 凝胶类材料等 |
立体光刻成型(SLA) | 光固化 | 光敏树脂 |
数字光处理 (DLP) | 光固化 | 光敏树脂 |
连续液面生产(CLIP) | 光固化 | 光敏树脂 |
选择性激光烧结(SLS) | 粉末成型 | 热塑性塑料、 金属、陶瓷粉末 |
选择性激光熔化(SLM) | 粉末成型 | 金属合金、 不锈钢 |
电子束熔化成型(EBM) | 粉末成型 | 金属合金 |
分层实体制造(LOM) | 层压 | 纸、 金属膜、 塑料薄膜 |
表1 一些常见的3D打印方法及其适用的材料类型
打印方法 | 类型 | 适用材料 |
---|---|---|
熔融沉积成型(FDM) | 挤出成型 | 热塑性塑料、 共晶系统金属等 |
直写成型(DIW) | 挤出成型 | 塑料、 陶瓷、 凝胶类材料等 |
立体光刻成型(SLA) | 光固化 | 光敏树脂 |
数字光处理 (DLP) | 光固化 | 光敏树脂 |
连续液面生产(CLIP) | 光固化 | 光敏树脂 |
选择性激光烧结(SLS) | 粉末成型 | 热塑性塑料、 金属、陶瓷粉末 |
选择性激光熔化(SLM) | 粉末成型 | 金属合金、 不锈钢 |
电子束熔化成型(EBM) | 粉末成型 | 金属合金 |
分层实体制造(LOM) | 层压 | 纸、 金属膜、 塑料薄膜 |
1 | ZHOU X T , LIU C J . Three-dimensional printing for catalytic applications: current status and perspectives[J]. Advanced Functional Materials, 2017, 27(30): 1701134. |
2 | RUIZ-MORALES J C , TARANCON A , CANALES-VAZQUEZ J , et al . Three dimensional printing of components and functional devices for energy and environmental applications[J]. Energy & Environmental Science, 2017, 10(4): 846-859. |
3 | PARRA-CABRERA C , ACHILLE C , KUHN S , et al . 3D printing in chemical engineering and catalytic technology: structured catalysts, mixers and reactors[J]. Chemical Society Reviews, 2017, 47(1): 209-230. |
4 | 李宇, 李永峰, 吴青青, 等 .金属基体整体式催化剂的制备及在VOCs催化燃烧中的应用研究进展[J].化工进展, 2011, 30(4):759-765. |
LI Y , LI Y F , WU Q Q , et al . Preparation of monolithic catalyst with metallic substrate and application in catalytic combustion of VOCs[J].Chemical Industry and Engineering Progress, 2011, 30(4):759-765. | |
5 | 王学海, 吴昊, 刘忠生 . 整体式Mn基低温脱硝催化剂研究[J].化工进展, 2015, 34(s1):127-130. |
WANG X H , WU H , LIU Z S .Performance of monolithic Mn catalyst for low temperature SCR[J].Chemical Industry and Engineering Progress, 2015, 34(s1):127-130. | |
6 | OZDEMIR S , ONSAN Z I , YILDIRIM R . Selective CO oxidation over monolithic Au/MgO/Al2O3 catalysts[J]. Journal of Chemical Technology and Biotechnology, 2012, 87(1): 58-64. |
7 | HORVATH J . Mastering 3D printing[M]. New York: Apress, 2014: 3-5. |
8 | GIBSON I , ROSEN D W , STUCKER B . Additive manufacturing technologies[M]. New York: Springer, 2010: 5-61. |
9 | TURNER B N , STRONG R , GOLD S A . A review of melt extrusion additive manufacturing processes: I. Process design and modeling[J]. Rapid Prototyping Journal, 2014, 20(3): 192-204. |
10 | JONES R , HAUFE P , SELLS E , et al . RepRap—the replicating rapid prototyper[J]. Robotica, 2011, 29: 177-191. |
11 | BOPARAI K S , SINGH R , SINGH H . Development of rapid tooling using fused deposition modeling: a review[J]. Rapid Prototyping Journal, 2016, 22(2): 281-299. |
12 | KALIA S , HALDORAI Y . Organic-inorganic hybrid nanomaterials[M]. Heidelberg: Springer, 2014: 249-281. |
13 | HONG J I , WINBERG P , SCHADLER L S , et al . Dielectric properties of zinc oxide/low density polyethylene nanocomposites[J]. Materials Letters, 2005, 59(4): 473-476. |
14 | HUANG D K , ZHANG B Y , ZHANG Y B , et al . Electrochemically reduced graphene oxide multilayer films as metal-free electrocatalysts for oxygen reduction[J]. Journal of Materials Chemistry A, 2013, 1(4): 1415-1420. |
15 | SHIN S R , FARZAD R , TAMAYOL A , et al . A bioactive carbon nanotube-based Ink for printing 2D and 3D flexible electronics[J]. Advanced Materials, 2016, 28(17): 3280-3289. |
16 | WEI X J , LI D , JIANG W , et al . 3D printable graphene composite[J]. Scientific Reports, 2015, 5: 11181. |
17 | ZHANG D , CHI B H , LI B W , et al . Fabrication of highly conductive graphene flexible circuits by 3D printing[J]. Synthetic Metals, 2016, 217: 79-86. |
18 | TORRADO PEREZ A R , ROBERSON D A , WICKER R B . Fracture surface analysis of 3D-printed tensile specimens of novel ABS-based materials[J]. Journal of Failure Analysis and Prevention, 2014, 14(3): 343-353. |
19 | SKORSKI M R , ESENTHER J M , AHMED Z , et al . The chemical, mechanical, and physical properties of 3D printed materials composed of TiO2-ABS nanocomposites[J]. Science and Technology of Advanced Materials, 2016, 17(1): 89-97. |
20 | CESARANO J , SEGALMAN R , CALVERT P . Robocasting provides moldless fabrication fiom slurry deposition[J]. Ceramic Industry, 1998, 148(4): 94-102. |
21 | ZHU C , HAN T Y J , DUOSS E B , et al . Highly compressible 3D periodic graphene aerogel microlattices[J]. Nature Communications, 2015, 6: 6962. |
22 | LI V C F , DUNN C K , ZHANG Z , et al . Direct ink write (DIW) 3D printed cellulose nanocrystal aerogel structures[J]. Scientific Reports, 2017, 7(1): 8018. |
23 | YAN P L , BROWN E , SU Q , et al . 3D printing hierarchical silver nanowire aerogel with highly compressive resilience and tensile elongation through tunable poisson's ratio[J]. Small, 2017, 13(38): 1701756. |
24 | PATAKY K , BRASCHLER T , NEGRO A , et al . Microdrop printing of hydrogel bioinks into 3D tissue-like geometries[J]. Advanced Materials, 2012, 24(3): 391-396. |
25 | HIGHLEY C B , RODELL C B , BURDICK J A . Direct 3D printing of shear-thinning hydrogels into self-healing hydrogels[J]. Advanced Materials, 2015, 27(34): 5075-5079. |
26 | SMAY J E , GRATSON G M , SHEPHERD R F , et al . Directed colloidal assembly of 3D periodic structures[J]. Advanced Materials, 2002, 14(18): 1279-1283. |
27 | LEWIS J A . Direct-write assembly of ceramics from colloidal inks[J]. Current Opinion in Solid State & Materials Science, 2002, 6(3): 245-250. |
28 | THERRIAULT D , WHITE S R , LEWIS J A . Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly[J]. Nature Materials, 2003, 2(4): 265-271. |
29 | GRATSON G M , XU M J , LEWIS J A . Microperiodic structures-direct writing of three-dimensional webs[J]. Nature, 2004, 428(6981): 386. |
30 | 王小锋, 孙月花, 彭超群, 等 .直写成型用悬浮液的设计[J].无机材料学报, 2015(11):1139-1147. |
WANG X F , SUN Y H , PENG C Q , et al . Suspensions designed for direct ink writing[J].Journal of Inorganic Materials, 2015(11):1139-1147. | |
31 | CHANNELL G M , MILLER K T , ZUKOSKI C F . Effects of microstructure on the compressive yield stress[J]. AIChE Journal, 2000, 46(1): 72-78. |
32 | RAO R B , KRAFCIK K L , MORALES A M , et al . Microfabricated deposition nozzles for direct-write assembly of three-dimensional periodic structures[J]. Advanced Materials, 2005, 17(3): 289-293. |
33 | TUBIO C R , AZUAJE J , ESCALANTE L , et al . 3D printing of a heterogeneous copper-based catalyst[J]. Journal of Catalysis, 2016, 334: 110-115. |
34 | ZHANG J , XIAO P . 3D printing of photopolymers[J]. Polymer Chemistry, 2018, 9(13): 1530-1540. |
35 | HULL C W . Apparatus for production of three-dimensional objects by stereolithography: US4575330[P]. 1986-03-11. |
36 | FANTINO E , CHIAPPONE A , ROPPOLO I , et al . 3D printing of conductive complex structures with in situ generation of silver nanoparticles[J]. Advanced Materials, 2016, 28(19): 3712-3717. |
37 | CHIAPPONE A , FANTINO E , ROPPOLO I , et al . 3D printed PEG-based hybrid nanocomposites obtained by sol-gel technique[J]. ACS Applied Materials & Interfaces, 2016, 8(8): 5627-5633. |
38 | KOTZ F , ARNOLD K , BAUER W , et al . Three-dimensional printing of transparent fused silica glass[J]. Nature, 2017, 544(7650): 337-339. |
39 | ECKEL Z C , ZHOU C Y , MARTIN J H , et al . Additive manufacturing of polymer-derived ceramics[J]. Science, 2016, 351(6268): 58-62. |
40 | HALLORAN J W . Ceramic stereolithography: additive manufacturing for ceramics by photopolymerization[J]. Annual Review of Materials Research, 2016, 46: 19-40. |
41 | MEZA L R , DAS S , GREER J R . Strong, lightweight, and recoverable three-dimensional ceramic nanolattices[J]. Science, 2014, 345(6202): 1322-1326. |
42 | ESSA K , HASSANIN H , ATTALLAH M M , et al . Development and testing of an additively manufactured monolithic catalyst bed for HTP thruster applications[J]. Applied Catalysis A: General, 2017, 542: 125-135. |
43 | AMBROSI A , MOO J G S , PUMERA M . Helical 3D-printed metal electrodes as custom-shaped 3D platform for electrochemical devices[J]. Advanced Functional Materials, 2016, 26(5): 698-703. |
44 | AVRIL A , HORNUNG C H , URBAN A , et al . Continuous flow hydrogenations using novel catalytic static mixers inside a tubular reactor[J]. Reaction Chemistry & Engineering, 2017, 2(2): 180-188. |
45 | 王虎 .纳米改性光固化快速成型树脂性能的研究[D].青岛:青岛科技大学, 2016. |
WANG H .Study on the properties of UV-curing rapid prototyping resin modified by nano-materials[D].Qingdao:Qingdao University of Science and Technology, 2016. | |
46 | CASTLES F , ISAKOV D , LUI A , et al . Microwave dielectric characterisation of 3D-printed BaTiO3/ABS polymer composites[J]. Scientific Reports, 2016, 6: 8. |
47 | LEE J H , KO K H , PARK B O . Electrical and optical properties of ZnO transparent conducting films by the sol-gel method[J]. Journal of Crystal Growth, 2003, 247(1/2): 119-125. |
48 | ZOU H , WU S S , SHEN J . Polymer/silica nanocomposites: preparation, characterization, properties, and applications[J]. Chemical Reviews, 2008, 108(9): 3893-3957. |
49 | DEMIR M M , CASTIGNOLLES P , AKBEY U , et al . In-situ bulk polymerization of dilute particle/MMA dispersions[J]. Macromolecules, 2007, 40(12): 4190-4198. |
50 | FOSTER C W , DOWN M P , ZHANG Y , et al . 3D printed graphene based energy storage devices[J]. Scientific Reports, 2017, 7: 42233. |
51 | HWANG S , REYES E I , MOON K S , et al . Thermo-mechanical characterization of metal/polymer composite filaments and printing parameter study for fused deposition modeling in the 3D printing process[J]. Journal of Electronic Materials, 2015, 44(3): 771-777. |
52 | ZHANG J H , ZHAO S C , ZHU M , et al . 3D-printed magnetic Fe3O4/MBG/PCL composite scaffolds with multifunctionality of bone regeneration, local anticancer drug delivery and hyperthermia[J]. Journal of Materials Chemistry B, 2014, 2(43): 7583-7595. |
53 | WU C T , FAN W , ZHOU Y H , et al . 3D-printing of highly uniform CaSiO3 ceramic scaffolds: preparation, characterization and in vivo osteogenesis[J]. Journal of Materials Chemistry, 2012, 22(24): 12288-12295. |
54 | WANG Z Y , WANG J J , LI M Y , et al . Three-dimensional printed acrylonitrile butadiene styrene framework coated with Cu-BTC metal-organic frameworks for the removal of methylene blue[J]. Scientific Reports, 2014, 4: 5939. |
55 | SHI Z N , XU C , CHEN F , et al . Renewable metal-organic-frameworks-coated 3D printing film for removal of malachite green[J]. RSC Advances, 2017, 7(79): 49947-49952. |
56 | YAN C Y , JI Z Y , MA S H, et al . 3D printing as feasible platform for on-site building oil-skimmer for oil collection from spills[J]. Advanced Materials Interfaces, 2016, 3(13): 7. |
57 | LV J , GONG Z J , HE Z K , et al . 3D printing of a mechanically durable superhydrophobic porous membrane for oil-water separation[J]. Journal of Materials Chemistry A, 2017, 5(24): 12435-12444. |
58 | MICHORCZYK P , HEDRZAK E , WEGRZYNIAK A . Preparation of monolithic catalysts using 3D printed templates for oxidative coupling of methane[J]. Journal of Materials Chemistry A, 2016, 4(48): 18753-18756. |
59 | LI Y , CHEN S , CAI X , et al . Rational design and preparation of hierarchical monoliths through 3D printing for syngas methanation[J]. Journal of Materials Chemistry A, 2018, 6(11): 5695-5702. |
60 | WAN Y , SHI Y F , ZHAO D Y . Supramolecular aggregates as templates: ordered mesoporous polymers and carbons[J]. Chemistry of Materials, 2008, 20(3): 932-945. |
61 | CHANDRASEKARAN S , DUOSS E B , WORSLEY M A , et al . 3D printing of high performance cyanate ester thermoset polymers[J]. Journal of Materials Chemistry A, 2018, 6(3): 853-858. |
62 | LEWICKI J P , RODRIGUEZ J N , ZHU C , et al . 3D-printing of meso-structurally ordered carbon fiber/polymer composites with unprecedented orthotropic physical properties[J]. Scientific Reports, 2017, 7: 43401. |
63 | YANG K , GRANT J C , LAMEY P , et al . Diels-Alder reversible thermoset 3D printing: isotropic thermoset polymers via fused filament fabrication[J]. Advanced Functional Materials, 2017, 27(24): 11. |
64 | TAMON H , ISHIZAKA H , YAMAMOTO T , et al . Influence of freeze-drying conditions on the mesoporosity of organic gels as carbon precursors[J]. Carbon, 2000, 38(7): 1099-1105. |
65 | ELKHATAT A M , AL-MUHTASEB S A . Advances in tailoring resorcinol-formaldehyde organic and carbon gels[J]. Advanced Materials, 2011, 23(26): 2887-2903. |
66 | ZHU C , LIU T , QIAN F , et al . Supercapacitors based on 3D hierarchical graphene aerogels with periodic macropores[J]. Nano Letters, 2016, 16(6): 3448-3456. |
67 | NATHAN-WALLESER T , LAZAR I M , FABRITIUS M , et al . 3D micro-extrusion of graphene-based active electrodes: towards high-rate AC line filtering performance electrochemical capacitors[J]. Advanced Functional Materials, 2014, 24(29): 4706-4716. |
68 | CHI K , ZHANG Z Y , XI J B , et al . Freestanding graphene paper supported three-dimensional porous graphene-polyaniline nanoconnposite synthesized by inkjet printing and in flexible all-solid-state supercapacitor[J]. ACS Applied Materials & Interfaces, 2014, 6(18): 16312-16319. |
69 | LAM C X F , MO X M , TEOH S H , et al . Scaffold development using 3D printing with a starch-based polymer[J]. Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 2002, 20(1/2): 49-56. |
70 | RAMBO C R , TRAVITZKY N , ZIMMERMANN K , et al . Synthesis of TiC/Ti-Cu composites by pressureless reactive infiltration of TiCu alloy into carbon preforms fabricated by 3D-printing[J]. Materials Letters, 2005, 59(8/9): 1028-1031. |
71 | LIU Z B , ZHANG M , BHANDARI B , et al . Impact of rheological properties of mashed potatoes on 3D printing[J]. Journal of Food Engineering, 2018, 220: 76-82. |
72 |
ZHOU X T , LIU C J . Three-dimensional printing of porous carbon structures with tailorable pore sizes[J]. Catalysis Today, 2018. DOI: 10.1016/j.cattod.2018.05.044.
DOI URL |
73 | KONAROVA M , ASLAM W , GE L , et al . Enabling process intensification by 3D printing of catalytic structures[J]. Chem. Cat. Chem., 2017, 9(21): 4132-4138. |
74 | FRAZIER W E . Metal additive manufacturing: a review[J]. Journal of Materials Engineering and Performance, 2014, 23(6): 1917-1928. |
75 | FARAHANI R D , DUBE M , THERRIAULT D . Three-dimensional printing of multifunctional nanocomposites: manufacturing techniques and applications[J]. Advanced Materials, 2016, 28(28): 5794-5821. |
76 | LIU X , JERVIS R , MAHER R C , et al . 3D-printed structural pseudocapacitors[J]. Advanced Materials Technologies, 2016, 1(9): 1600167. |
77 | CHEN L , TANG X , XIE P , et al . 3D printing of artificial leaf with tunable hierarchical porosity for CO2 photoreduction[J]. Chemistry of Materials, 2018, 30(3): 799-806. |
78 | AZUAJE J , TUBIO C R , ESCALANTE L , et al . An efficient and recyclable 3D printed α Al2O3 catalyst for the multicomponent assembly of bioactive heterocycles[J]. Applied Catalysis A, General, 2017, 530: 203-210. |
79 | TUBIO C R , GUITIAN F , GIL A . Fabrication of ZnO periodic structures by 3D printing[J]. Journal of the European Ceramic Society, 2016, 36(14): 3409-3415. |
80 | TAYLOR S L , JAKUS A E , SHAH R N , et al . Iron and nickel cellular structures by sintering of 3D-printed oxide or metallic particle inks[J]. Advanced Engineering Materials, 2017, 19(11): 8. |
81 | THAKKAR H V , EASTMAN S , HAJARI A , et al . 3D-printed zeolite monoliths for CO2 removal from enclosed environments[J]. ACS Applied Materials & Interfaces, 2016, 8(41): 27753-27761. |
82 | COUCK S , LEFEVERE J , MULLENS S , et al . CO2, CH4 and N2 separation with a 3DFD-printed ZSM-5 monolith[J]. Chemical Engineering Journal, 2017, 308: 719-726. |
83 | COUCK S , COUSIN-SAINT-REMI J , VAN DER PERRE S , et al . 3D-printed SAPO-34 monoliths for gas separation[J]. Microporous and Mesoporous Materials, 2018, 255: 185-191. |
84 | THAKKAR H , EASTMAN S , AL-MAMOORI A , et al . Formulation of aminosilica adsorbents into 3D-printed monoliths and evaluation of their CO2 capture performance[J]. ACS Applied Materials & Interfaces, 2017, 9(8): 7489-7498. |
85 | LEFEVERE J , GYSEN M , MULLENS S , et al . The benefit of design of support architectures for zeolite coated structured catalysts for methanol-to-olefin conversion[J]. Catalysis Today, 2013, 216: 18-23. |
86 | DIAZ-MARTA A S , TUBIO C R , CARBAJALES C , et al . Three-dimensional printing in catalysis: combining 3D heterogeneous copper and palladium catalysts for multicatalytic multicomponent reactions[J]. ACS Catalysis, 2018, 8(1): 392-404. |
87 | AVILA P , MONTES M , MIRO E E . Monolithic reactors for environmental applications—A review on preparation technologies[J]. Chemical Engineering Journal, 2005, 109(1/2/3): 11-36. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[6] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[7] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[8] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[9] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[10] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[11] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[12] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[13] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[14] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
[15] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |