[1] 英国石油公司, BP世界能源统计年鉴[EB/OL].[2017-06-12]. http://www.bp.com/statisticalreview. BP. BP statistical review of world energy[EB/OL].[2017-06-12]. http://www.bp.com/statisticalreview.
[2] 高云. 巴黎气候变化大会后中国的气候变化应对形势[J]. 气候变化研究进展, 2017, 13(1):89-94. GAO Yun. China's response to climate change issues after Paris Climate Change Conference[J]. Climate Change Research, 2017, 13(1):89-94.
[3] 国家发改委, 国家能源局. 能源发展"十三五"规划[EB/OL].[2016-12-26]. http://www.ndrc.gov.cn/zcfb/zcfbtz/201701/t20170117_835278.html. National Development and Reform Commission, National Energy Administration. Energy development 13th Five-year Plan[EB/OL].[2016-12-26]. http://www.ndrc.gov.cn/zcfb/zcfbtz/201701/t20170117_835278.html.
[4] 中国电力企业联合会. 中国煤电清洁发展报告[EB/OL].[2017-09-22]. http://www.cec.org.cn/zhuanti/2017nianzhuanti/zhongguomeidianqingjiefazhanyuhuanjingyingxiangfabuyantaohui/yaowen/2017-09-22/173384.html. The China Electricity Council. The development of Chinese coal cleaning report[EB/OL].[2017-09-22]. http://www.cec.org.cn/zhuanti/2017nianzhuanti/zhongguomeidianqingjiefazhanyuhuanjingyingxiangfabuyantaohui/yaowen/2017-09-22/173384.html.
[5] RUBIN E S, MANTRIPRAGADA H, MARKS A, et al. The outlook for improved carbon capture technology[J]. Progress in Energy and Combustion Science, 2012, 38(5):630-671.
[6] 韩涛, 赵瑞, 张帅, 等. 燃煤电厂二氧化碳捕集技术研究及应用[J]. 煤炭工程, 2017, 49(5):24-28. HAN Tao, ZHAO Rui, ZHANG Shuai, et al. Research and application on carbon capture of coal fired power plants[J]. Coal Engineering, 2017, 49(5):24-28.
[7] 靖宇, 韦力, 王运东. 吸附法捕集二氧化碳吸附剂的研究进展[J]. 化工进展, 2011, 30(s2):133-138. JING Yu, WEI Li, WANG Yundong. The advances of adsorbents in the field of CO2 capture[J]. Chemical Industry and Engineering Progress, 2011, 30(s2):133-138.
[8] 张克舫, 刘中良, 王远亚,等. 化学吸收法CO2捕集解吸能耗的分析计算[J]. 化工进展, 2013, 32(12):3008-3014. ZHANG Kefang, LIU Zhongliang, WANG Yuanya, et al. Analysis and calculation of the desorption energy consumption of CO2 capture process by chemical absorption method[J]. Chemical Industry and Engineering Progress,, 2013, 32(12):3008-3014.
[9] 孙亚伟, 谢美连, 刘庆岭,等.膜法分离燃煤电厂烟气中CO2的研究现状及进展[J]. 化工进展, 2017, 36(5):1880-1889. SUN Yawei, XIE Meilian, LIU Qingling, et al. Membrane-based carbon dioxide separation from flue gases of coal-fired power plant——current status and developments[J]. Chemical Industry and Engineering Progress, 2017, 36(5):1880-1889.
[10] LEUNG D Y C, CARAMANNA G, MAROTO-VALER M M. An overview of current status of carbon dioxide capture and storage technologies[J]. Renewable and Sustainable Energy Reviews, 2014, 39:426-443.
[11] LIANG Z W, FU K Y, IDEM R, et al. Review on current advances, future challenges and consideration issues for post-combustion CO2 capture using amine-based absorbents[J]. Chinese Journal of Chemical Engineering, 2016, 24(2):278-288.
[12] OKO E, WANG M, JOEL A S. Current status and future development of solvent-based carbon capture[J]. International Journal of Coal Science & Technology, 2017, 4(1):5-14.
[13] WANG M, LAWAL A, STEPHENSON P, et al. Post-combustion CO2 capture with chemical absorption:a state-of-the-art review[J]. Chemical Engineering Research and Design, 2011, 89(9):1609-1624.
[14] ZHANG K, LIU Z, WANG Y, et al. Flash evaporation and thermal vapor compression aided energy saving CO2 capture systems in coal-fired power plant[J]. Energy, 2014, 66(s):556-568.
[15] LI K, LEIGH W, FERON P, et al. Systematic study of aqueous monoethanolamine (MEA)-based CO2 capture process:techno-economic assessment of the MEA process and its improvements[J]. Applied Energy, 2016, 165:648-659.
[16] ROCHELLE G T. Amine scrubbing for CO2 capture[J]. Science, 2009, 325(5948):1652-1654.
[17] 周姗, 王淑娟, ROCHELLE G T, 等. CO2捕集过程中有机胺热降解的实验研究[J]. 清华大学学报(自然科学版), 2012, 52(1):81-86. ZHOU Shan, WANG Shujuan, ROCHELLE G T, et al. Experiment research on amine thermal degradation during CO2 capture[J]. Journal of Tsinghua University (Science and Technology), 2012, 52(1):81-86.
[18] 陈健, 罗伟亮, 李晗. 有机胺吸收二氧化碳的热力学和动力学研究进展[J]. 化工学报, 2014, 65(1):12-21. CHEN Jian, LUO Weiliang, LI Han. A review for research on thermodynamics and kinetics of carbon dioxide absorption with organic amines[J]. CIESC Journal, 2014, 65(1):12-21.
[19] DU Y, YUAN Y, ROCHELLE G T. Capacity and absorption rate of tertiary and hindered amines blended with piperazine for CO2 capture[J]. Chemical Engineering Science, 2016, 155:397-404.
[20] HINAI A A, HADRI N E, ZAHRA M A. Amine-blends screening and characterization for CO2 post-combustion capture[M]. Berlin:Springer International Publishing, 2017.
[21] KIM Y E, PARK J H, YUN S H, et al. Carbon dioxide absorption using a phase transitional alkanolamine-alcohol mixture[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(4):1486-1492.
[22] ZHANG W, JIN X, TU W, et al. A novel CO2 phase change absorbent:MEA/1-propanol/H2O[J]. Energy & Fuels, 2017, 31(4):4273-4279.
[23] ZENG S, ZHANG X, BAI L, et al. Ionic-liquid-based CO2 capture systems:structure, interaction and process[J]. Chemical Reviews, 2017, 117(14):9625-9673.
[24] HELDEBRANT D J, KOECH P K, GLEZAKOU V-A, et al. Water-lean solvents for post-combustion CO2 capture:fundamentals, uncertainties, opportunities, and outlook[J]. Chemical Reviews, 2017, 117(14):9594-9624.
[25] LIANG Z, RONGWONG W, LIU H, et al. Recent progress and new developments in post-combustion carbon-capture technology with amine based solvents[J]. International Journal of Greenhouse Gas Control, 2015, 40:26-54.
[26] 方梦祥, 周旭萍, 王涛, 等. CO2化学吸收剂[J]. 化学进展, 2015, 27(12):1808-1814. FANG Mengxiang, ZHOU Xuping, WANG Tao, et al. Solvent development in CO2 chemical absorption[J]. Progress in Chemistry, 2015, 27(12):1808-1814.
[27] ZHUANG Q, CLEMENTS B, DAI J, et al. Ten years of research on phase separation absorbents for carbon capture:achievements and next steps[J]. International Journal of Greenhouse Gas Control, 2016, 52:449-460.
[28] BUDZIANOWSKI W M. Single solvents, solvent blends, and advanced solvent systems in CO2 capture by absorption:a review[J]. International Journal of Global Warming, 2015, 7(2):184.
[29] LE MOULLEC Y, KANNICHE M. Screening of flowsheet modifications for an efficient monoethanolamine (MEA) based post-combustion CO2 capture[J]. International Journal of Greenhouse Gas Control, 2011, 5(4):727-740.
[30] LE MOULLEC Y, NEVEUX T, AL AZKI A, et al. Process modifications for solvent-based post-combustion CO2 capture[J]. International Journal of Greenhouse Gas Control, 2014, 31:96-112.
[31] SANPASERTPARNICH T, IDEM R, TONTIWACHWUTHIKUMUL P. CO2 absorption in an absorber column with a series intercooler circuits[J]. Energy Procedia, 2011, 4:1676-1682.
[32] OYENEKAN B A, ROCHELLE G T. Alternative stripper configurations for CO2 capture by aqueous amines[J]. AIChE Journal, 2007, 53(12):3144-3154.
[33] COUSINS A, WARDHAUGH L T, FERON P H M. Preliminary analysis of process flow sheet modifications for energy efficient CO2 capture from flue gases using chemical absorption[J]. Chemical Engineering Research and Design, 2011, 89(8):1237-1251.
[34] PLAZA J M, VAN WAGENER D, ROCHELLE G T. Modeling CO2 capture with aqueous monoethanolamine[J]. International Journal of Greenhouse Gas Control, 2010, 4(2):161-166.
[35] LI K, COUSINS A, YU H, et al. Systematic study of aqueous monoethanolamine-based CO2 capture process:model development and process improvement[J]. Energy Science & Engineering, 2016, 4(1):23-39.
[36] AHN H, LUBERTI M, LIU Z, et al. Process configuration studies of the amine capture process for coal-fired power plants[J]. International Journal of Greenhouse Gas Control, 2013, 16:29-40.
[37] BABURAO B, SCHUBER C. Advanced intercooling and recycling in CO2 absorption:US2011/0168020[P]. 2013-09-26.
[38] XUE B, YU Y, CHEN J, et al. A comparative study of MEA and DEA for post-combustion CO2 capture with different process configurations[J]. International Journal of Coal Science & Technology, 2017, 4(1):15-24.
[39] STEC M, TATARCZUK A, WIECLAW-SOLNY L, et al. Pilot plant results for advanced CO2 capture process using amine scrubbing at the Jaworzno Ⅱ Power Plant in Poland[J]. Fuel, 2015, 151(s):50-56.
[40] JOEL A S, WANG M, RAMSHAW C, et al. Process analysis of intensified absorber for post-combustion CO2 capture through modelling and simulation[J]. International Journal of Greenhouse Gas Control, 2014, 21:91-100.
[41] JOEL A S, WANG M, RAMSHAW C, et al. Modelling, simulation and analysis of intensified regenerator for solvent based carbon capture using rotating packed bed technology[J]. Applied Energy, 2017, 203:11-25.
[42] DE MIGUEL MERCADER F, MAGNESCHI G, SANCHEZ FERNANDEZ E, et al. Integration between a demo size post-combustion CO2 capture and full size power plant. An integral approach on energy penalty for different process options[J]. International Journal of Greenhouse Gas Control, 2012, 11:S102-S113.
[43] ⅡJIMA M, MIMURA T, YAGI Y. System and method for recovering CO2:EP1759756B1[P]. 2014-11-26.
[44] COUSINS A, WARDHAUGH L T, FERON P H M. A survey of process flow sheet modifications for energy efficient CO2 capture from flue gases using chemical absorption[J]. International Journal of Greenhouse Gas Control, 2011, 5(4):605-619.
[45] GELOWITZ D, TONTIWACHWUTHIKUL P, IDEM R. Method and absorbent composition for recovering a gaseous component from a gas stream:US20100229723A1[P]. 2010-09-16.
[46] ZHAO B, LIU F, CUI Z, et al. Enhancing the energetic efficiency of MDEA/PZ-based CO2 capture technology for a 650MW power plant:Process improvement[J]. Applied Energy, 2017, 185:362-375.
[47] LIN Y-J, MADAN T, ROCHELLE G T. Regeneration with rich bypass of aqueous piperazine and monoethanolamine for CO2 capture[J]. Industrial & Engineering Chemistry Research, 2014, 53(10):4067-4074.
[48] VAN WAGENER D H, ROCHELLE G T. Stripper configurations for CO2 capture by aqueous monoethanolamine and piperazine[J]. Energy Procedia, 2011, 4(s):1323-1330.
[49] SANCHEZ FERNANDEZ E, BERGSMA E J, DE MIGUEL MERCADER F, et al. Optimisation of lean vapour compression (LVC) as an option for post-combustion CO2 capture:net present value maximisation[J]. International Journal of Greenhouse Gas Control, 2012, 11:S114-S121.
[50] NEVEUX T, LE MOULLEC Y, CORRIOU J P, et al. Energy performance of CO2 capture processes:interaction between process design and solvent[J]. Chem. Eng. Trans, 2013, 35:337-342.
[51] NAUMOVITZ J P. Method and system for reducing energy requirements of a CO2 capture system:US8728209B2[P]. 2014-05-20.
[52] JUNG J, JEONG Y S, LEE U, et al. New Configuration of the CO2 capture process using aqueous monoethanolamine for coal-fired power plants[J]. Industrial & Engineering Chemistry Research, 2015, 54(15):3865-3878.
[53] OYENEKAN B A, ROCHELLE G T. Energy performance of stripper configurations for CO2 capture by aqueous amines[J]. Industrial & Engineering Chemistry Research, 2006, 45(8):2457-2464.
[54] JASSIM M S, ROCHELLE G T. Innovative absorber/stripper configurations for CO2 capture by aqueous monoethanolamine[J]. Industrial & Engineering Chemistry Research, 2006, 45(8):2465-2472.
[55] KARIMI M, HILLESTAD M, SVENDSEN H F. Capital costs and energy considerations of different alternative stripper configurations for post combustion CO2 capture[J]. Chemical Engineering Research and Design, 2011, 89(8):1229-1236.
[56] PELLEGRINI L A, MOIOLI S, GAMBA S. Energy saving in a CO2 capture plant by MEA scrubbing[J]. Chemical Engineering Research and Design, 2011, 89(9):1676-1683.
[57] PIEPER N, SCHRAMM H, WECHSUNG M. Seprating device for CO2 and power plant:WO/2011/124425A1[P]. 2011-10-13.
[58] FANG M, XIANG Q, WANG T, et al. Experimental study on the novel direct steam stripping process for postcombustion CO2 capture[J]. Industrial & Engineering Chemistry Research, 2014, 53(46):18054-18062.
[59] WANG T, HE H, YU W, et al. Process simulations of CO2 desorption in the interaction between the novel direct steam stripping process and solvents[J]. Energy & Fuels, 2017, 31(4):4255-4262.
[60] WANG T, YU W, LE MOULLEC Y, et al. Solvent regeneration by novel direct non-aqueous gas stripping process for post-combustion CO2 capture[J]. Applied Energy, 2017, 205:23-32.
[61] GAO H, ZHOU L, LIANG Z, et al. Comparative studies of heat duty and total equivalent work of a new heat pump distillation with split flow process, conventional split flow process, and conventional baseline process for CO2 capture using monoethanolamine[J]. International Journal of Greenhouse Gas Control, 2014, 24:87-97.
[62] LIANG Z, GAO H, RONGWONG W, et al. Comparative studies of stripper overhead vapor integration-based configurations for post-combustion CO2 capture[J]. International Journal of Greenhouse Gas Control, 2015, 34:75-84.
[63] OH S-Y, BINNS M, CHO H, et al. Energy minimization of MEA-based CO2 capture process[J]. Applied Energy, 2016, 169:353-362.
[64] AROMADA S A, ØI L E. Simulation of improved absorption configurations for CO2 capture[C]//Proceedings of the 56th SIMS, Linköping, Sweden, October 07-09, 2015.
[65] AROMADA S A, ØI L E. Energy and economic analysis of improved absorption configurations for CO2 capture[J]. Energy Procedia, 2017, 114:1342-1351.
[66] MOULLEC Y L, KANNICHE M. Description and evaluation of flowsheet modifications and their interaction for an efficient monoethanolamine based post-combustion CO2 capture[J]. Chemical Engineering Transactions, 2010, 21(6):175-180.
[67] LE MOULLEC Y, KANNICHE M. Optimization of MEA based post combustion CO2 capture process:flowsheeting and energetic integration[J]. Energy Procedia, 2011, 4:1303-1309.
[68] DAMARTZIS T, PAPADOPOULOS A I, SEFERLIS P. Process flowsheet design optimization for various amine-based solvents in post-combustion CO2 capture plants[J]. Journal of Cleaner Production, 2016, 111:204-216.
[69] ZHANG W, CHEN J, LUO X, et al. Modelling and process analysis of post-combustion carbon capture with the blend of 2-amino-2-methyl-1-propanol and piperazine[J]. International Journal of Greenhouse Gas Control, 2017, 63:37-46.
[70] LIN Y-J, ROCHELLE G T. Approaching a reversible stripping process for CO2 capture[J]. Chemical Engineering Journal, 2016, 283:1033-1043.
[71] LIN Y J, CHEN E, ROCHELLE G T. Pilot plant test of the advanced flash stripper for CO2 capture[J]. Faraday Discussions, 2016, 192:37-58.
[72] ZHANG Y, SACHDE D, CHEN E, et al. Modeling of absorber pilot plant performance for CO2 capture with aqueous piperazine[J]. International Journal of Greenhouse Gas Control, 2017, 64(s):300-313. |