化工进展 ›› 2018, Vol. 37 ›› Issue (09): 3471-3483.DOI: 10.16085/j.issn.1000-6613.2017-1988
贾明民, 冯艺, 邱健豪, 姚建峰
收稿日期:
2017-09-24
修回日期:
2018-02-08
出版日期:
2018-09-05
发布日期:
2018-09-05
通讯作者:
姚建峰,教授,研究方向为功能材料设计与制备。
作者简介:
贾明民(1993-),男,博士研究生。
基金资助:
JIA Mingmin, FENG Yi, QIU Jianhao, YAO Jianfeng
Received:
2017-09-24
Revised:
2018-02-08
Online:
2018-09-05
Published:
2018-09-05
摘要: UiO-66是一种具有优异物理化学稳定性的金属有机骨架(MOFs)材料,近年来引起了研究者们的强烈关注。本文详细介绍了UiO-66的结构,重点探讨了溶剂热法过程中的一系列影响因素,包括使用不同的金属前体,改变合成温度、溶剂、各组分配比以及模板剂等,制备各种性能的UiO-66。针对溶剂热法合成效率较低的问题,介绍了微波合成法、微流控、连续流和无溶剂法等其它UiO-66的制备方法。为了扩大UiO-66的应用范围,对其有机配体进行功能化改性或与其他材料复合改性,具体介绍了改性后UiO-66在气体吸附、水处理、催化、电化学和化学传感等方面的应用。最后综述了利用UiO-66具有多孔特性构建分离膜方面的研究进展,具体阐述了纯UiO-66膜和UiO-66复合膜在气体分离和水处理方面的应用。
中图分类号:
贾明民, 冯艺, 邱健豪, 姚建峰. UiO-66的制备、功能化及膜分离研究进展[J]. 化工进展, 2018, 37(09): 3471-3483.
JIA Mingmin, FENG Yi, QIU Jianhao, YAO Jianfeng. Advances in the synthesis and functionalization of UiO-66 and its applications in membrane separation[J]. Chemical Industry and Engineering Progress, 2018, 37(09): 3471-3483.
[1] LI J R, SCULLEY J, ZHOU H C. Metal-organic frameworks for separations[J]. Chemical Reviews, 2012, 112(2):869-932. [2] YANG Q Y, WIERSUM A D, LLEWELLYN P L, et al. Functionalizing porous zirconium terephthalate UiO-66(Zr) for natural gas upgrading:a computational exploration[J]. Chemical Communications, 2011, 47(34):9603-9605. [3] BURTCH N C, JASUJA H, WALTON K S. Water stability and adsorption in metal-organic frameworks[J]. Chemical Reviews, 2014, 114(20):10575-10612. [4] DAN-HARDI M, SERRE C, FROT T, et al. A new photoactive crystalline highly porous titanium(Ⅳ) dicarboxylate[J]. Journal of the American Chemical Society, 2009, 131(31):10857-10859. [5] JAKOBSEN S, GIANOLIO D, WRAGG D S, et al. Structural determination of a highly stable metal-organic framework with possible application to interim radioactive waste scavenging:HF-UiO-66[J]. Physical Review B, 2012, 86(12):125429. [6] CAVKA J H, JAKOBSEN S, OLSBYE U, et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stabilit[J]. Am. Chem. Soc., 2008, 130:13850-13851. [7] VALENZANO L, CIVALLERI B, CHAVAN S M, et al. Disclosing the complex structure of UiO-66 metal organic framework:a synergic combination of experiment and theory[J]. Chemistry of Materials, 2011, 23(7):1700-1718. [8] RAGON F, HORCAJADA P, CHEVREAU H, et al. In situ energy-dispersive x-ray diffraction for the synthesis optimization and scale-up of the porous zirconium terephthalate UiO-66[J]. Inorganic Chemistry, 2014, 53(5):2491-2500. [9] TULIG K, WALTON K S. An alternative UiO-66 synthesis for HCl- sensitive nanoparticle encapsulation[J]. RSC Advances, 2014, 4(93):51080-51083. [10] ZHAO Q, YUAN W, LIANG J, et al. Synthesis and hydrogen storage studies of metal-organic framework UiO-66[J]. International Journal of Hydrogen Energy, 2013, 38(29):13104-13109. [11] 刘强. 金属有机骨架材料UiO-66的制备及表征[J]. 云南化工, 2016, 43(6):1-7. LIU Qiang. The synthsis and characterization of metal organic frameworks——UiO-66[J]. Yunnan Chemical Technology, 2016, 43(6):1-7. [12] SCHAATE A, ROY P, GODT A, et al. Modulated synthesis of Zr-based metal-organic frameworks:from nano to single crystals[J]. Chemistry:a European Journal, 2011, 17(24):6643-6651. [13] REN J, LANGMI H W, NORTH B C, et al. Modulated synthesis of zirconium-metal organic framework (Zr-MOF) for hydrogen storage applications[J]. International Journal of Hydrogen Energy, 2014, 39(2):890-895. [14] QIU J, FENG Y, ZHANG X, et al. Acid-promoted synthesis of UiO-66 for highly selective adsorption of anionic dyes:adsorption performance and mechanisms[J]. Journal of Colloid and Interface Science, 2017, 499:151-158. [15] BARCIA P S, GUIMARAES D, MENDES P A P, et al. Reverse shape selectivity in the adsorption of hexane and xylene isomers in MOF UiO-66[J]. Microporous and Mesoporous Materials, 2011, 139(1/2/3):67-73. [16] KATZ M J, BROWN Z J, COLON Y J, et al. A facile synthesis of UiO-66, UiO-67 and their derivatives[J]. Chemical Communications, 2013, 49(82):9449-9451. [17] HAN Y, LIU M, LI K, et al. Facile synthesis of morphology and size-controlled zirconium metal-organic framework UiO-66:the role of hydrofluoric acid in crystallization[J]. Crystengcomm, 2015, 17(33):6434-6440. [18] MARSHALL R J, HOBDAY C L, MURPHIE C F, et al. Amino acids as highly efficient modulators for single crystals of zirconium and hafnium metal-organic frameworks[J]. Journal of Materials Chemistry A, 2016, 4(18):6955-6963. [19] HAN Y, LIU M, LI K, et al. Cu2 O mediated synthesis of metal organic framework UiO-66 in nanometer scale[J]. Crystal Growth & Design, 2017, 17(2):685-692. [20] BURAGOHAIN A, BISWAS S. Improved synthesis of a zirconium(Ⅳ) muconate metal-organic framework:characterization, stability and gas sorption properties[J]. European Journal of Inorganic Chemistry, 2015, 14:2463-2468. [21] LI Y, LIU Y, GAO W, et al. Microwave-assisted synthesis of UiO-66 and its adsorption performance towards dyes[J]. Crystengcomm, 2014, 16(30):7037-7042. [22] REN J, SEGAKWENG T, LANGMI H W, et al. Microwave-assisted modulated synthesis of zirconium-based metal-organic framework (Zr-MOF) for hydrogen storage applications[J]. International Journal of Materials Research, 2014, 105(5):516-519. [23] TADDEI M, DAU P V, COHEN S M, et al. Efficient microwave assisted synthesis of metal-organic framework UiO-66:optimization and scale up[J]. Dalton Transactions, 2015, 44(31):14019-14026. [24] REINSCH H, WAITSCHAT S, CHAVAN S M, et al. A facile "green" route for scalable batch production and continuous synthesis of zirconium MOFs[J]. European Journal of Inorganic Chemistry, 2016, 27:4490-4498. [25] FAUSTINI M, KIM J, JEONG G-Y, et al. Microfluidic approach toward continuous and ultrafast synthesis of metal-organic framework crystals and hetero structures in confined microdroplets[J]. Journal of the American Chemical Society, 2013, 135(39):14619-14626. [26] 邰石君, 盛东海, 杨君, 等. 微流控合成尺寸可调的MOF材料nano-UiO-66[J]. 当代化工, 2015, 44(10):2301-2302. TAI Shijun, SHENG Donghai, YANG Jun, et al. Preparation of Nano-Ui O66 with tunable particle sizes in continuous flow microreactor[J]. Contemporary Chemical Industry, 2015, 44(10):2301-2302. [27] SCHOENECKER P M, BELANCIK G A, GRABICKA B E, et al. Kinetics study and crystallization process design for scale-up of UiO-66-NH2 synthesis[J]. AIChE Journal, 2013, 59(4):1255-1262. [28] HU Z, PENG Y, KANG Z, et al. A modulated hydrothermal (MHT) approach for the facile synthesis of UiO66-type MOFs[J]. Inorganic Chemistry, 2015, 54(10):4862-4868. [29] UZAREVIC K, WANG T C, MOON S-Y, et al. Mechanochemical and solvent-free assembly of zirconium-based metal-organic frameworks[J]. Chemical Communications, 2016, 52(10):2133-2136. [30] ZOU C, VAGIN S, KRONAST A, et al. Template mediated and solvent-free route to a variety of UiO-66 metal-organic frameworks[J]. RSC Advances, 2016, 6(105):102968-102971. [31] CHAVAN S, VITILLO J G, UDDIN M J, et al. Functionalization of UiO-66 metal-organic framework and highly cross-linked polystyrene with Cr(CO)3:in situ formation, stability, and photoreactivity[J]. Chemistry of Materials, 2010, 22(16):4602-4611. [32] BISWAS S, VAN DER VOORT P. A general strategy for the synthesis of functionalised UiO-66 frameworks:characterisation, stability and CO2 adsorption properties[J]. European Journal of Inorganic Chemistry, 2013, 12:2154-2160. [33] LI Z, LIAO F, JIANG F, et al. Capture of H2 S and SO2 from trace sulfur containing gas mixture by functionalized UiO-66(Zr) materials:a molecular simulation study[J]. Fluid Phase Equilibria, 2016, 427:259-267. [34] ABID H R, ANG H M, WANG S B. Effects of ammonium hydroxide on the structure and gas adsorption of nanosized Zr-MOFs (UiO-66)[J]. Nanoscale, 2012, 4(10):3089-3094. [35] RADA Z H, ABID H R, SUN H, et al. Bifunctionalized metal organic frameworks, UiO-66-NO2-N[N=-NH2, -(OH)2, -(COOH)2], for enhanced adsorption and selectivity of CO2 and N2[J]. Journal of Chemical and Engineering Data, 2015, 60(7):2152-2161. [36] KRONAST A, ECKSTEIN S, ALTENBUCHNER P T, et al. Gated channels and selectivity tuning of CO2 over N2 sorption by post-synthetic modification of a UiO-66-type metal-organic framework[J]. Chemistry:a European Journal, 2016, 22(36):12800-12807. [37] HU Z, ZHANG K, ZHANG M, et al. A combinatorial approach towards water-stable metal-organic frameworks for highly efficient carbon dioxide separation[J]. Chemsuschem, 2014, 7(10):2791-2795. [38] HU Z, FAUCHER S, ZHUO Y, et al. Combination of optimization and metalated-ligand exchange:an effective approach to functionalize UiO-66(Zr) MOFs for CO2 separation[J]. Chemistry:a European Journal, 2015, 21(48):17245-17255. [39] YU J, BALBUENA P B. How impurities affect CO2 capture in metal-organic frameworks modified with different functional groups[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(1):117-124. [40] 王佳晨, 童敏曼, 单超, 等. 杂质对金属-有机骨架材料分离烟道气性能影响的分子模拟研究[J]. 高等学校化学学报, 2015, 36(2):316-324. WANG Jiachen, TONG Minman, SHAN Chao, et al. Molecular simulation of the influence of impurities on the separation of flue gas in metal organic frameworks[J]. Chemical Journal of Chinese Universities, 2015, 36(2):316-324. [41] ZHA M, LIU J, WONG Y-L, et al. Extraction of palladium from nuclear waste-like acidic solutions by a metal-organic framework with sulfur and alkene functions[J]. Journal of Materials Chemistry A, 2015, 3(7):3928-3934. [42] WANG K, GU J, YIN N. Efficient removal of Pb(Ⅱ) and Cd(Ⅱ) using NH2-functionalized Zr-MOFs via rapid microwave-promoted synthesis[J]. Industrial & Engineering Chemistry Research, 2017, 56(7):1880-1887. [43] SALEEM H, RAFIQUE U, DAVIES R P. Investigations on post-synthetically modified UiO-66-NH2 for the adsorptive removal of heavy metal ions from aqueous solution[J]. Microporous and Mesoporous Materials, 2016, 221:238-244. [44] LIN K-Y A, CHEN S-Y, JOCHEMS A P. Zirconium-based metal organic frameworks:highly selective adsorbents for removal of phosphate from water and urine[J]. Materials Chemistry and Physics, 2015, 160:168-176. [45] 邱健豪, 何明, 贾明民, 等. 金属有机骨架材料制备双金属或多金属催化材料及其应用[J]. 化学进展, 2016, 28(7):1016-1028. QIU Jianhao, HE Ming, JIA Mingmin, et al. Metal organic frameworks for Bi-and multi-metallic catalyst and their applications[J]. Progress in Chemistry, 2016, 28(7):1016-1028. [46] CHEN J, LI K, CHEN L, et al. Conversion of fructose into 5-hydroxymethylfurfural catalyzed by recyclable sulfonic acid-functionalized metal-organic frameworks[J]. Green Chemistry, 2014, 16(5):2490-2499. [47] YEE K-K, WONG Y-L, ZHA M, et al. Room-temperature acetylene hydration by a Hg(Ⅱ)-laced metal-organic framework[J]. Chemical Communications, 2015, 51(54):10941-10944. [48] 李想, 张艳梅, 张静,等. UiO-66-NH2 负载Pd催化剂的合成、表征及其催化反应[J]. 辽宁石油化工大学学报, 2017, 37(1):8-13. LI Xiang, ZHANG Yanmei, ZHANG Jing, et al. Synthesis, characterization and catalytic reaction of UiO-66-NH2 supported Pd catalyst[J]. Journal of Liaoning University of Petroleum & Chemical Technology, 2017, 37(1):8-13. [49] 刘飞扬,彭真,汪结义, 等. N-K2 Ti4O9/g-C3 N4/UiO-66三元复合材料的协同光催化作用[J].环境科学学报, 2016, 10(10):5682-5688. LIU Feiyang, PENG Zhen, WANG Jieyi, et al. Synergistically enhanced photocatalytic activity of the N-K2Ti4 O9/g-C3 N4/UiO-66 ternary composites[J]. Acta Scientiae Circumstantiae, 2016, 10(10):5682-5688. [50] DECOSTE J B, ROSSIN J A, PETERSON G W. Hierarchical pore development by plasma etching of Zr-based metal-organic frameworks[J]. Chemistry:a European Journal, 2015, 21(50):18029-18032. [51] VANDICHEL M, HAJEK J, VERMOORTELE F, et al. Active site engineering in UiO-66 type metal-organic frameworks by intentional creation of defects:a theoretical rationalization[J]. Crystengcomm, 2015, 17(2):395-406. [52] AMELOOT R, AUBREY M, WIERS B M, et al. Ionic conductivity in the metal-organic framework UiO-66 by dehydration and insertion of lithium tert-butoxide[J]. Chemistry:a European Journal, 2013, 19(18):5533-5536. [53] PHANG W J, JO H, LEE W R, et al. Superprotonic conductivity of a uio-66 framework functionalized with sulfonic acid groups by facile postsynthetic oxidation[J]. Angewandte Chemie:International Edition, 2015, 54(17):5142-5146. [54] YANG F, HUANG H, WANG X, et al. Proton conductivities in functionalized UiO-66:tuned properties, thermogravimetry mass, and molecular simulation analyses[J]. Crystal Growth & Design, 2015, 15(12):5827-5833. [55] TAYLOR J M, DEKURA S, IKEDA R, et al. Defect control to enhance proton conductivity in a metal-organic framework[J]. Chemistry of Materials, 2015, 27(7):2286-2289. [56] STASSEN I, BUEKEN B, REINSCH H, et al. Towards metal-organic framework based field effect chemical sensors:UiO-66-NH2 for nerve agent detection[J]. Chemical Science, 2016, 7(9):5827-5832. [57] WU L, ZHANG X-F, LI Z-Q, et al. A new sensor based on amino-functionalized zirconium metal-organic framework for detection of Cu2+ in aqueous solution[J]. Inorganic Chemistry Communications, 2016, 74:22-25. [58] DONG Y, ZHANG H, LEI F, et al. Benzimidazole-functionalized Zr-UiO-66 nanocrystals for luminescent sensing of Fe3+ in water[J]. Journal of Solid State Chemistry, 2017, 245:160-163. [59] MIYAMOTO M, KOHMURA S, IWATSUKA H, et al. In situ solvothermal growth of highly oriented Zr-based metal organic framework UiO-66 film with monocrystalline layer[J]. Crystengcomm, 2015, 17(18):3422-3425. [60] LIU X, DEMIR N K, WU Z, et al. Highly water-stable zirconium metal organic framework UiO-66 membranes supported on alumina hollow fibers for desalination[J]. Journal of the American Chemical Society, 2015, 137(22):6999-7002. [61] HOD I, BURY W, KARLIN D M, et al. Directed growth of electroactive metal-organic framework thin films using electrophoretic deposition[J]. Advanced Materials, 2014, 26(36):6295-6300. [62] FRIEBE S, GEPPERT B, STEINBACH F, et al. Metal-organic framework UiO-66 layer:a highly oriented membrane with good selectivity and hydrogen permeance[J]. ACS Applied Materials & Interfaces, 2017, 9:12878-12885. [63] LIU J, CANFIELD N, LIU W. Preparation and characterization of a hydrophobic metal-organic framework membrane supported on a thin porous metal sheet[J]. Industrial & Engineering Chemistry Research, 2016, 55(13):3823-3832. [64] MIYAMOTO M, HORI K, GOSHIMA T, et al. An organoselective zirconium-based metal-organic-framework UiO-66 membrane for pervaporation[J]. European Journal of Inorganic Chemistry, 2017, 2017(4):2094-2099. [65] ZHANG Y, FENG X, LI H, et al. Photoinduced postsynthetic polymerization of a metal-organic framework toward a flexible stand-alone membrane[J]. Angewandte Chemie:International Edition, 2015, 54(14):4259-4263. [66] YAO J, WANG H. Zeolitic imidazolate framework composite membranes and thin films:synthesis and applications[J]. Chemical Society Reviews, 2014, 43(13):4470-4493. [67] NIK O G, CHEN X Y, KALIAGUINE S. Functionalized metal organic framework-polyimide mixed matrix membranes for CO2/CH4 separation[J]. Journal of Membrane Science, 2012, 413:48-61. [68] ANJUM M W, VERMOORTELE F, KHAN A L, et al. Modulated UiO-66-based mixed-matrix membranes for CO2 separation[J]. ACS Applied Materials & Interfaces, 2015, 7(45):25193-25201. [69] VENNA S R, LARTEY M, LI T, et al. Fabrication of MMMs with improved gas separation properties using externally-functionalized MOF particles[J]. Journal of Materials Chemistry A, 2015, 3(9):5014-5022. [70] GUO X, LIU D, HAN T, et al. Preparation of thin film nanocomposite membranes with surface modified MOF for high flux organic solvent nanofiltration[J]. AIChE Journal, 2017, 63(4):1303-1312. [71] WANG S, WU D, HUANG H, et al. Computational exploration of H2S/CH4 mixture separation using acid-functionalized UiO-66(Zr) membrane and composites[J]. Chinese Journal of Chemical Engineering, 2015, 23(8):1291-1299. [72] SU N C, SUN D T, BEAVERS C M, et al. Enhanced permeation arising from dual transport pathways in hybrid polymer-MOF membranes[J]. Energy & Environmental Science, 2016, 9(3):922-931. [73] SHEN J, LIU G, HUANG K, et al. UiO-66-polyether block amide mixed matrix membranes for CO2 separation[J]. Journal of Membrane Science, 2016, 513:155-165. [74] CASTARLENAS S, TELLEZ C, CORONAS J. Gas separation with mixed matrix membranes obtained from MOF UiO-66-graphite oxide hybrids[J]. Journal of Membrane Science, 2017, 526:205-211. [75] JIA M, FENG Y, LIU S, et al. Graphene oxide gas separation membranes intercalated by UiO-66-NH2 with enhanced hydrogen separation performance[J]. Journal of Membrane Science, 2017, 539:172-177. [76] SMITH S J D, LADEWIG B P, HILL A J, et al. Post-synthetic Ti exchanged UiO-66 metal-organic frameworks that deliver exceptional gas permeability in mixed matrix membranes[J]. Scientific Reports, 2015, 5:7823. |
[1] | 贺美晋. 分子管理在炼油领域分离技术中的应用和发展趋势[J]. 化工进展, 2023, 42(S1): 260-266. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[4] | 张祚群, 高扬, 白超杰, 薛立新. 二次界面聚合同步反扩散原位生长ZIF-8纳米粒子制备聚酰胺混合基质反渗透(RO)膜[J]. 化工进展, 2023, 42(S1): 364-373. |
[5] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[6] | 赵巍, 赵德银, 李世瀚, 刘洪达, 孙进, 郭艳秋. 三嗪型天然气管道缓蚀型减阻剂合成与应用[J]. 化工进展, 2023, 42(S1): 391-399. |
[7] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[8] | 李世霖, 胡景泽, 王毅霖, 王庆吉, 邵磊. 电渗析分离提取高值组分的研究进展[J]. 化工进展, 2023, 42(S1): 420-429. |
[9] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[10] | 廖志新, 罗涛, 王红, 孔佳骏, 申海平, 管翠诗, 王翠红, 佘玉成. 溶剂脱沥青技术应用与进展[J]. 化工进展, 2023, 42(9): 4573-4586. |
[11] | 李雪佳, 李鹏, 李志霞, 晋墩尚, 郭强, 宋旭锋, 宋芃, 彭跃莲. 亲水和疏水改性膜的抗结垢和润湿能力的对比[J]. 化工进展, 2023, 42(8): 4458-4464. |
[12] | 徐杰, 夏隆博, 罗平, 邹栋, 仲兆祥. 面向膜蒸馏过程的全疏膜制备及其应用进展[J]. 化工进展, 2023, 42(8): 3943-3955. |
[13] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
[14] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
[15] | 陈俊俊, 费昌恩, 段金汤, 顾雪萍, 冯连芳, 张才亮. 高生物活性聚醚醚酮化学改性研究进展[J]. 化工进展, 2023, 42(8): 4015-4028. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |