化工进展 ›› 2018, Vol. 37 ›› Issue (09): 3454-3470.DOI: 10.16085/j.issn.1000-6613.2017-2152
林凤采1, 卢麒麟1, 卢贝丽1, 黄彪1, 唐丽荣1,2
收稿日期:
2017-10-20
修回日期:
2017-12-19
出版日期:
2018-09-05
发布日期:
2018-09-05
通讯作者:
黄彪,教授,主要从事植物纤维化学和炭材料的研究;卢贝丽,副教授,主要从事纳米纤维素功能性复合材料的研究;唐丽荣,讲师,主要从事纳米纤维素功能性复合材料的研究。
作者简介:
林凤采(1990-),男,博士研究生,E-mail:linfengcai8@163.com。
基金资助:
LIN Fengcai1, LU Qilin1, LU Beili1, HUANG Biao1, TANG Lirong1,2
Received:
2017-10-20
Revised:
2017-12-19
Online:
2018-09-05
Published:
2018-09-05
摘要: 纳米纤维素(nanocellulose,NC)是一种具有优异力学性能、质轻、高比表面积、可再生、可生物降解等特性的新型纳米材料,纳米纤维素与聚合物结合得到的复合材料被视为新一代生物质基纳米复合材料。文章首先概述了微纤化纤维素(MFC)、纳米纤维素晶体(NCC)和细菌纳米纤维素(BC)3种主要纳米纤维素的特性及其主要的制备方法,并对其制备过程中存在的问题进行分析。其次,文章简述了纳米纤维素在亲水性聚合物(淀粉、聚乙烯醇、水性聚氨酯等)和非亲水性聚合物(聚乳酸、聚己内酯、聚羟基烷酸酯和环氧树脂等)纳米复合材料方面的研究进展。最后,指出纳米纤维素在绿色工业化生产过程中还需解决生产成本、分离技术、能耗和环境污染等问题。此外,提高纳米纤维素与聚合物之间的界面相容性,开发以纳米纤维素为主体成分的新型纳米复合材料是今后发展的一个重要方向。
中图分类号:
林凤采, 卢麒麟, 卢贝丽, 黄彪, 唐丽荣. 纳米纤维素及其聚合物纳米复合材料的研究进展[J]. 化工进展, 2018, 37(09): 3454-3470.
LIN Fengcai, LU Qilin, LU Beili, HUANG Biao, TANG Lirong. Research progress of nanocellulose and its polymer nanocomposites[J]. Chemical Industry and Engineering Progress, 2018, 37(09): 3454-3470.
[1] KLEMM D, KRAMER F, MORITZ S, et al. Nanocelluloses:a new family of nature-based materials[J]. Angewandte Chemie, 2011, 50(24):5438-5466. [2] 高艳红, 石瑜, 田超, 等. 微纤化纤维素及其制备技术的研究进展[J]. 化工进展, 2017, 36(1):232-246. GAO Y H, SHI Y, TIAN C,et al.Properties and preparation progress of microfibrillated cellulose:a review[J]. Chemical Industry and Engineering Progress, 2017, 36(1):232-246. [3] 黄彪, 卢麒麟, 唐丽荣. 纳米纤维素的制备及应用研究进展[J]. 林业工程学报, 2016, 1(5):1-9. HUANG B, LU Q L, TANG L R. Research progress of nanocellulose manufacture and application[J]. Journal of Forestry Engineering, 2016, 1(5):1-9. [4] 王晓宇, 张洋, 江华, 等. 两种方法制备纳米纤维素的特性对比[J]. 林业工程学报, 2015, 29(6):95-99. WANG X Y, ZHANG Y, JIANG H, et al.Characteristics of nanocellulose prepared by two methods[J]. Journal of Forestry Engineering, 2015, 29(6):95-99. [5] HABIBI Y, LUCIA L A, ROJAS O J. Cellulose nanocrystals:chemistry, self-assembly, and applications[J]. Chemical Reviews, 2010, 110(6):3479-3500. [6] MOON R J, MARTINI A, NAIRN J, et al. Cellulose nanomaterials review:structure, properties and nanocomposites[J]. Chemical Society Reviews, 2011, 42(42):3941-3994. [7] AZIZI SAMIR M A, ALLOIN F, DUFRESNE A. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field[J]. Biomacromolecules, 2005, 6(2):612-626. [8] DUFRESNE A, CAVAILL J Y, VIGNON M R. Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils[J]. Journal of Applied Polymer Science, 2015, 64(6):1185-1194. [9] TSUGUYUKI Saito, SATOSHI Kimura, YOSHIHARU Nishiyama A, et al. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose[J]. Biomacromolecules, 2007, 8(8):2485-2491. [10] HABIBI Y, GOFFIN A, SCHILTZ N, et al. Bionanocomposites based on poly(ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization[J]. Journal of Materials Chemistry, 2008, 18(41):5002-5010. [11] LU Q, CAI Z, LIN F, et al. Extraction of cellulose nanocrystals with a high yield of 88% by simultaneous mechanochemical activation and phosphotungstic acid hydrolysis[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(4):2165-2172. [12] FLEMING K, GRAY D, PRASANNAN S, et al. Cellulose crystallites:a new and robust liquid crystalline medium for the measurement of residual dipolar couplings[J]. Journal of the American Chemical Society, 2000, 122(21):5224-5225. [13] GRUNERT M, WINTER W T. Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals[J]. Journal of Polymers & the Environment, 2002, 10(1/2):27-30. [14] SAMIR M A S A, ALLOIN F, PAILLET M, et al. Tangling effect in fibrillated cellulose reinforced nanocomposites[J]. Macromolecules, 2009, 37(11):4313-4316. [15] SHINSUKE IFUKU, MASAYA NOGI, KENTARO ABE, et al. Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites:dependence on acetyl-group DS[J]. Biomacromolecules, 2007, 8(6):1973-1978. [16] 周静, 沈葵忠, 房桂干, 等. 漂白竹浆疏水改性纳米纤丝化纤维素的制备和表征[J]. 林业工程学报, 2017, 2(2):101-106. ZHOU J, SHEN K Z, FANG G G, et al. Preparation and characterization of hydrophobic nanofibrillatedcellulose fiber from bleached bamboo pulp[J]. Journal of Forestry Engineering, 2017, 2(2):101-106. [17] SPENCE K L, VENDITTI R A, ROJAS O J, et al. A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods[J]. Cellulose, 2011, 18(4):1097-1111. [18] SIRÓI, PLACKETT D. Microfibrillated cellulose and new nanocomposite materials:a review[J]. Cellulose, 2010, 17(3):459-494. [19] MATSUDA Y, HIROSE M, UENO K. Super microfibrillated cellulose, process for producing the same, and coated paper and tinted paper using the same:US6183596[P]. 2001-02-06. [20] TURBAK A F, SNYDER F W, SANDBERG K R. Microfibrillated cellulose, a new cellulose product:Properties, uses and commercial potential[C]//Cellulose Conference, Syracuse, NY, USA, 24 May 1982. 1983-01-01. [21] LEITNER J, HINTERSTOISSER B, WASTYN M, et al. Sugar beet cellulose nanofibril-reinforced composites[J]. Cellulose, 2007, 14(5):419-425. [22] HABIBI Y, MAHROUZ M, VIGNON M R. Microfibrillated cellulose from the peel of prickly pear fruits[J]. Food Chemistry, 2009, 115(2):423-429. [23] LEE S Y, CHUN S J, KANG I A, et al. Preparation of cellulose nanofibrils by high-pressure homogenizer and cellulose-based composite films[J]. Journal of Industrial & Engineering Chemistry, 2009, 15(1):50-55. [24] IWAMOTO S, NAKAGAITO A N, YANO H. Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites[J]. Applied Physics A:Materials Science & Processing, 2007, 89(2):461-466. [25] CHENG Q, WANG S, RIALS T G. Poly(vinyl alcohol) nanocomposites reinforced with cellulose fibrils isolated by high intensity ultrasonication[J]. Composites Part A, 2009, 40(2):218-224. [26] 冯若. 声化学基础研究中的声学问题[J]. 物理学进展, 1996, 16(3):402-412. FENG Ruo. The acoustic problems in fundamental study onsonochemistry[J]. Progress in Physics, 1996,16(3):402-412. [27] CHEN W, YU H, LIU Y, et al. Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process[J]. Cellulose, 2011, 18(2):433-442. [28] WANG S, CHENG Q. A novel process to isolate fibrils from cellulose fibers by high-intensity ultrasonication, Part 1:process optimization[J]. Journal of Applied Polymer Science, 2009, 113(2):1270-1275. [29] HAN J, ZHOU C, WU Y, et al. Self-assembling behavior of cellulose nanoparticles during freeze-drying:effect of suspension concentration, particle size, crystal structure, and surface charge[J]. Biomacromolecules, 2013, 14(5):1529-1540. [30] JANARDHNAN S, SAIN M. Isolation of cellulose microfibrils:an enzymatic approach[J]. Bioresources, 2007, 1(2):176-188. [31] ISOGAI A, SAITO T, FUKUZUMI H. TEMPO-oxidized cellulose nanofibers[J]. Nanoscale, 2011, 3(1):71-85. [32] EYHOLZER C, BORDEANU N, LOPEZ-SUEVOS F, et al. Preparation and characterization of water-redispersible nanofibrillated cellulose in powder form[J]. Cellulose, 2010, 17(1):19-30. [33] LAVOINE N, DESLOGES I, DUFRESNE A, et al. Microfibrillated cellulose——its barrier properties and applications in cellulosic materials:a review[J]. Carbohydrate Polymers, 2012, 90(2):735-764. [34] LⅡMATAINEN H, VISANKO M, SIRVI J A, et al. Enhancement of the nanofibrillation of wood cellulose through sequential periodate-chlorite oxidation[J]. Biomacromolecules, 2012, 13(5):1592-1597. [35] KHALIL H P S A, BHAT A H, YUSRA A F I. Green composites from sustainable cellulose nanofibrils:a review[J]. Carbohydrate Polymers, 2012, 87(2):963-979. [36] 徐雁. 功能性无机-晶态纳米纤维素复合材料的研究进展与展望[J]. 化学进展, 2011, 23(11):2183-2199. XU Y. Functional inorganic-cellulose hybrid nanocomposites[J]. Chemical Industry and Engineering Progress, 2011, 23(11):2183-2199. [37] MMED B S A, MMED E S, RULE J, et al. Cellulose nanowhiskers from coconut husk fibers:effect of preparation conditions on their thermal and morphological behavior[J]. Carbohydrate Polymers, 2010, 81(1):83-92. [38] EDGAR C D, GRAY D G. Smooth model cellulose Ⅰ surfaces from nanocrystal suspensions[J]. Cellulose, 2003, 10(4):299-306. [39] BECK-CANDANEDO S, ROMAN M, GRAY D G. Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions[J]. Biomacromolecules, 2005, 6(2):1048-1054. [40] 唐丽荣, 欧文, 林雯怡, 等. 酸水解制备纳米纤维素工艺条件的响应面优化[J]. 林产化学与工业, 2011, 31(06):61-65. TANG L R, O W, LIN W Y, et al. Optimization of acid hydrolysis processing of nanocellulose crystalusing response surface methodology[J]. Chemistry and Industry of Forest Products, 2011, 31(06):61-65. [41] ROMAN M, WINTER W T. Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose[J]. Biomacromolecules, 2004, 5(5):1671-1677. [42] ZILLILLAH, NGU T A, LI Z. Phosphotungstic acid-functionalized magnetic nanoparticles as an efficient and recyclable catalyst for the one-pot production of biodiesel from grease via esterification and transesterification[J]. Green Chemistry, 2014, 16(3):1202-1210. [43] 卢麒麟. 巨菌草制备纳米纤维素的研究[D]. 福州:福建农林大学, 2013. LU Q L. Manufacture of cellulose nanocrystals from Pennisetum Sinese Roxb[D]. Fuzhou:Fujian Agriculture and Forestry University, 2013. [44] TANG L R, HUANG B, OU W, et al. Manufacture of cellulose nanocrystals by cation exchange resin-catalyzed hydrolysis of cellulose[J]. Bioresource Technology, 2011, 102(23):10973-10977. [45] 张秀菊, 林志丹, 陈文彬, 等. 细菌纤维素纳米复合材料的研究进展[J]. 合成纤维, 2010, 39(1):1-6. ZHANG X J, LIN Z D, CHEN W B, et al. Progress on study of bacterial cellulose nanocomposite[J]. Synthetic Fiber in China, 2010, 39(1):1-6. [46] BROWN A J. On an acetic ferment which forms cellulose[J]. Journal of the Chemical Society Transactions, 1886,49:432-439. [47] 朱昌来, 李峰, 尤庆生, 等. 纳米细菌纤维素的制备及其超微结构镜观察[J]. 生物医学工程研究, 2008, 27(4):287-290. ZHU Y C, LI F, YOU Q S, et al. Preparation of nanometer biomaterial bacterialcellulose and observation of its ultra -structure[J]. Journal of Biomedical Engineering Research, 2008, 27(4):287-290. [48] PAXIMADA P, DIMITRAKOPOULOU E A, TSOUKO E, et al. Structural modification of bacterial cellulose fibrils under ultrasonic irradiation[J]. Carbohydr. Polym., 2016, 150:5-12. [49] HABIBI Y, DUFRESNE A. Highly filled bionanocomposites from functionalized polysaccharide nanocrystals[J]. Biomacromolecules, 2008, 9(7):1974-1980. [50] CAPADONA J R, VAN D B O, CAPADONA L A, et al. A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates[J]. Nature Nanotechnology, 2007, 2(12):765-769. [51] MOON R J, MARTINI A, NAIRN J, et al. Cellulose nanomaterials review:structure, properties and nanocomposites[J]. Cheminform, 2011, 42:3941-3994. [52] WANG S, JIA Z X, ZHOU X Y, et al. Preparation of a biodegradable poly(vinyl alcohol)-starch composite film and its application in pesticide controlled release[J]. Journal of Applied Polymer Science, 2017, 134(28):45051-45058. [53] DUFRESNE A, CASTA O J. Polysaccharide nanomaterial reinforced starch nanocomposites:a review[J]. Starch/Stärke, 2017, 69:1-19. [54] RICO M, RODR GUEZLLAMAZARES S, BARRAL L, et al. Processing and characterization of polyols plasticized-starch reinforced with microcrystalline cellulose[J]. Carbohydrate Polymers, 2016, 149:83-93. [55] SUDHARSAN K, MOHAN C C, BABU P A S, et al. Production and characterization of cellulose reinforced starch (CRT) films[J]. International Journal of Biological Macromolecules, 2016, 83(5):385-395. [56] MIRANDA C S, FERREIRA M S, MAGALH ES M T, et al. Mechanical, thermal and barrier properties of starch-based films plasticized with glycerol and lignin and reinforced with cellulose nanocrystals[J]. Materials Today Proceedings, 2015, 2(1):63-69. [57] KAUSHIK A, SINGH M, VERMA G. Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw[J]. Carbohydrate Polymers, 2010, 82(2):337-345. [58] INDRARTI L, INDRIYATI, SYAMPURWADI A, et al. Physical and mechanical properties of modified bacterial cellulose composite films[J]. American Institute of Physics Conference Series, 2016, 1711(1):107-124. [59] ALEMDAR A, SAIN M. Biocomposites from wheat straw nanofibers:morphology, thermal and mechanical properties[J]. Composites Science & Technology, 2008, 68(2):557-565. [60] PRAKOBNA K, GALLAND S, BERGLUND L A. High-performance and moisture-stable cellulose-starch nanocomposites based on bioinspired core-shell nanofibers[J]. Biomacromolecules, 2015, 16(3):904-912. [61] LU J, WANG T, DRZAL L T. Preparation and properties of microfibrillated cellulose polyvinyl alcohol composite materials[J]. Composites Part A:Applied Science & Manufacturing, 2008, 39(5):738-746. [62] CHENG Q, WANG S, RIALS T G, et al. Physical and mechanical properties of polyvinyl alcohol and polypropylene composite materials reinforced with fibril aggregates isolated from regenerated cellulose fibers[J]. Cellulose, 2007, 14(6):593-602. [63] CHAKRABORTY A, SAIN M, KORTSCHOT M. Reinforcing potential of wood pulp-derived microfibres in a PVA matrix[J]. Holzforschung, 2006, 60(1):1089-1058. [64] LU B, LIN F, JIANG X, et al. One-pot assembly of microfibrillated cellulose reinforced pva-borax hydrogels with self-healing and pH responsive properties[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(1):948-956. [65] HONARKAR H. Waterborne polyurethanes:a review[J]. Journal of Dispersion Science & Technology, 2018,39(4):507-516. [66] SANTAMARIA-ECHART A, UGARTE L, GARCIA ASTRAIN C, et al. Cellulose nanocrystals reinforced environmentally-friendly waterborne polyurethane nanocomposites[J]. Carbohydrate Polymers, 2016, 151:1203-1209. [67] 叶代勇, 周刘佳. 纳米纤维素晶须用作水性聚氨酯的增稠流变剂[J]. 华南理工大学学报(自然科学版), 2010, 38(9):63-67. YE D Y, ZHOU L J. Nanocellulose whiskersas thickening rheological agent for waterborne polyurethane dispersion[J]. Journal of South China University of Technology (Natural Science Edition), 2010, 38(9):63-67. [68] SANTAMARIA-ECHART A, UGARTE L, ARBELAIZ A, et al. Two different incorporation routes of cellulose nanocrystals in waterborne polyurethane nanocomposites[J]. European Polymer Journal, 2016, 76:99-109. [69] SANTAMARIA-ECHART A, UGARTE L, ARBELAIZ A, et al. Modulating the microstructure of waterborne polyurethanes for preparation of environmentally friendly nanocomposites by incorporating cellulose nanocrystals[J]. Cellulose, 2017, 24(2):823-834. [70] KHOO R Z, ISMAIL H, CHOW W S. Thermal and morphological properties of poly (lactic acid)/nanocellulose nanocomposites[J]. Procedia Chemistry, 2016, 19:788-794. [71] JONOOBI M, HARUN J, MATHEW A P, et al. Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion[J]. Composites Science and Technology, 2010, 70(12):1742-1747. [72] TINGAUT P, ZIMMERMANN T, LOPEZSUEVOS F. Synthesis and characterization of bionanocomposites with tunable properties from poly(lactic acid) and acetylated microfibrillated cellulose[J]. Biomacromolecules, 2010, 11(2):454-464. [73] MARIANO M, PILATE F, OLIVEIRA F B D, et al. Preparation of cellulose nanocrystal-reinforced poly(lactic acid) nanocomposites through noncovalent modification with PLLA-based surfactants[J]. ACS Omega, 2017, 2(6):2678-2688. [74] XU C, WU D, LV Q, et al. Crystallization temperature as the probe to detect polymer-filler compatibility in the poly(ε-caprolactone) composites with acetylated cellulose nanocrystal[J]. Journal of Physical Chemistry C, 2017, 121(34):18615-18624. [75] LU Z, LIU M, GAO Q, et al. Design of heterogeneous nuclei composed of uniaxial cellulose nanocrystal assemblies for epitaxial growth of poly(ε-caprolactone)[J]. Macromolecules, 2017, 50(8):3355-3364. [76] LÖNNBERG H, FOGELSTR M L, BERGLUND L, et al. Surface grafting of microfibrillated cellulose with poly(ε -caprolactone)——synthesis and characterization[J]. European Polymer Journal, 2008, 44(9):2991-2997. [77] ZHANG Y, SONG P A, LIU H, et al. Morphology, healing and mechanical performance of nanofibrillated cellulose reinforced poly(ε-caprolactone)/epoxy composites[J]. Composites Science & Technology, 2016, 125:62-70. [78] CARVALHO K C C D, MONTORO S R, CIOFFI M O H, et al. Polyhydroxyalkanoates and their nanobiocomposites with cellulose nanocrystals[M]//Design and applications of nanostructured polymer blends and nanocomposite systems. Amsterdam:Elsevier, 2016:261-285. [79] YU H Y, QIN Z Y, ZHOU Z. Cellulose nanocrystals as green fillers to improve crystallization and hydrophilic property of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)[J]. Progress in Natural Science:Materials International, 2011, 21(6):478-484. [80] 张仁华, 张蕤, 黎航, 等. 纳米纤维素晶须增强生物聚酯P(3,4)HB复合材料[J]. 林业工程学报, 2016, 1(3):85-90. ZHANG R H, ZHANG R, LI H, et al. Biopolyester P(3, 4)HB-based nanocomposites reinforced bycellulose nanowhiskers[J]. Journal of Forestry Engineering, 2016, 1(3):85-90. [81] LING M, SHAFAAMRI A, KASI R, et al. Anticorrosion properties of epoxy/nanocellulose nanocomposite coating[J]. Bioresources, 2017, 12(2):2912-2929. [82] BARARI B, OMRANI E, DORRI M A, et al. Mechanical, physical and tribological characterization of nano-cellulose fibers reinforced bio-epoxy composites:an attempt to fabricate and scale the ‘Green’ composite[J]. Carbohydrate Polymers, 2016, 147:282-293. [83] SABA N, MOHAMMAD F, PERVAIZ M, et al. Mechanical, morphological and structural properties of cellulose nanofibers reinforced epoxy composites[J]. International Journal of Biological Macromolecules, 2017, 97:190-200. [84] ANSARI F, LINDH E L, FURO I, et al. Interface tailoring through covalent hydroxyl-epoxy bonds improves hygromechanical stability in nanocellulose materials[J]. Composites Science & Technology, 2016, 134:175-183. [85] LU J, ASKELAND P, DRZAL L T. Surface modification of microfibrillated cellulose for epoxy composite applications[J]. Polymer, 2008, 49(5):1285-1296. [86] JABBAR A, MILITK J, WIENER J, et al. Nanocellulose coated woven jute/green epoxy composites:characterization of mechanical and dynamic mechanical behavior[J]. Composite Structures, 2017, 161:340-349. [87] GIROUARD N, SCHUENEMAN G T, SHOFNER M L, et al. Exploiting colloidal interfaces to increase dispersion, performance, and pot-life in cellulose nanocrystal/waterborne epoxy composites[J]. Polymer, 2015, 68:111-121. [88] ANSARI F, GALLAND S, JOHANSSON M, et al. Cellulose nanofiber network for moisture stable, strong and ductile biocomposites and increased epoxy curing rate[J]. Composites Part A:Applied Science & Manufacturing, 2014, 63:35-44. [89] SHAO Y, YASHIRO T, OKUBO K, et al. Effect of cellulose nano fiber (CNF) on fatigue performance of carbon fiber fabric composites[J]. Composites Part A:Applied Science & Manufacturing, 2015, 76:244-254. [90] 喻胜飞, 肖祎, 汪艮艮, 等. 粉煤灰/壳聚糖复合材料的制备及在木材染色废水中的应用[J]. 林业工程学报, 2016, 1(6):29-33. YU S F, XIAO W, WANG G G, et al. Preparation of flyash/chitosan composites and its application in the wastewater of wood dyeing[J]. Journal of Forestry Engineering, 2016, 1(6):29-33. [91] FERNANDES S C M, FREIRE C S R, SILVESTRE A J D, et al. Transparent chitosan films reinforced with a high content of nanofibrillated cellulose[J]. Carbohydrate Polymers, 2010, 81(2):394-401. [92] DASH R, FOSTON M, RAGAUSKAS A J. Improving the mechanical and thermal properties of gelatin hydrogels cross-linked by cellulose nanowhiskers[J]. Carbohydrate Polymers, 2013, 91(2):638-645. [93] CAPADONA J R, SHANMUGANATHAN K, TYLER D J, et al. Stimuli-responsive polymer nanocomposites inspired by the sea cucumber dermis[J]. Science, 2008, 319(5868):1370-1374. |
[1] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[2] | 朱传强, 茹晋波, 孙亭亭, 谢兴旺, 李长明, 高士秋. 固体高分子脱硝剂选择性非催化还原NO x 特性[J]. 化工进展, 2023, 42(9): 4939-4946. |
[3] | 李伯耿, 罗英武, 刘平伟. 聚合物产品工程研究内容与方法的思考[J]. 化工进展, 2023, 42(8): 3905-3909. |
[4] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
[5] | 于静文, 宋璐娜, 刘砚超, 吕瑞东, 武蒙蒙, 冯宇, 李忠, 米杰. 一种吲哚基超交联聚合物In-HCP对水中碘的吸附作用[J]. 化工进展, 2023, 42(7): 3674-3683. |
[6] | 余希希, 张金帅, 雷文, 刘承果. 基于动态共价键自修复的光固化高分子材料研究进展[J]. 化工进展, 2023, 42(7): 3589-3599. |
[7] | 于丁一, 李圆圆, 王晨钰, 纪永升. pH响应性木质素水凝胶的制备及药物控释[J]. 化工进展, 2023, 42(6): 3138-3146. |
[8] | 杨发容, 顾丽莉, 刘洋, 李伟雪, 蔡洁云, 王惠平. 计算机模拟辅助特丁津分子印迹聚合物的制备及应用[J]. 化工进展, 2023, 42(6): 3157-3166. |
[9] | 杨家添, 唐金铭, 梁恣荣, 黎胤宏, 胡华宇, 陈渊. 新型淀粉基高吸水树脂抑尘剂的制备及其应用[J]. 化工进展, 2023, 42(6): 3187-3196. |
[10] | 何志勇, 郭天佛, 王金利, 吕锋. 二氧化碳/环氧化合物开环共聚催化剂进展[J]. 化工进展, 2023, 42(4): 1847-1859. |
[11] | 谭德新, 曾佳欣, 梁莉敏, 申思慧, 曾子倩, 王艳丽. 取代烷基变化对芳炔单体及其聚合物性能影响[J]. 化工进展, 2023, 42(4): 2031-2037. |
[12] | 张艺璇, 胡伟, 刘梦瑶, 鞠敬鸽, 赵义侠, 康卫民. 聚合物电解质在锌离子电池中的研究进展[J]. 化工进展, 2023, 42(3): 1397-1410. |
[13] | 高江雨, 张耀君, 贺攀阳, 刘礼才, 张枫烨. 磷酸基地质聚合物的制备及其性能研究进展[J]. 化工进展, 2023, 42(3): 1411-1425. |
[14] | 薛博, 杨婷婷, 王雪峰. 聚苯胺/碳纳米管气敏材料的研究进展[J]. 化工进展, 2023, 42(3): 1448-1456. |
[15] | 郝旭波, 牛宝联, 郭昊天, 徐祥和, 张忠斌, 李应林. 相变微胶囊改性及其在光热转换中的应用[J]. 化工进展, 2023, 42(2): 854-871. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |