[1] NGUYEN H L,JO Y K,CHA M,et al. Mussel-inspired anisotropic nanocellulose and silver nanoparticle composite with improved mechanical properties,electrical conductivity and antibacterial activity[J]. Polymers,2016,8(3):102-114.
[2] 孙磊,刘爱心,黄红莹,等. 水溶性银纳米颗粒的制备及抗菌性能[J]. 物理化学学报,2011,27(3):722-728. SUN L,LIU A X,HUANG H Y,et al. Preparation and antibacterial properties of water-soluble Ag nanoparticles[J]. Acta Physico-Chimica Sinica,2011,27(3):722-728.
[3] 李君建,李巧玲. 载银TiO2/碳纳米管复合材料的制备及其催化杀菌性能[J]. 化工进展,2015,34(7):1887-1894. LI J J,LI Q L. Synthesis of Ag-TiO2/CNTs nanopartical composites and their photocatalytic activity and antiseptic property[J]. Chemical Industry and Engineering Process,2015,34(7):1887-1894.
[4] BARAPATRE A,AADIL K R,JHA H. Synergistic antibacterial and antibiofilm activity of silver nanoparticles biosynthesized by lignin-degrading fungus[J]. Bioresources and Bioprocessing,2016,3:8-20.
[5] AHMED K B A,SUBRAMANIAN S,SIVASUBRAMANIAN A,et al. Preparation of gold nanoparticles using Salicornia brachiata plant extract and evaluation of catalytic and antibacterial activity[J]. Spectrochimica Acta Part A:Molecular and BiomolecularSpectroscopy,2014,130:54-58.
[6] PELLETIRE D A,SURESH A K,HOLTON G A,et al. Effects of engineered cerium oxide nanoparticles on bacterial growth and viability[J]. Applied Environmental Microbiology,2010,76:7981-7989.
[7] MARAMBIO-JONES C,HOEK E M V. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment[J]. Journal of Nanoparticle Research,2010,12:1531-1551.
[8] 王瑶,王瑜,程昱,等. 纳米银粒径与抗细菌性能的关系[J]. 中国皮革,2016,45(5):1-4. WANG Y,WANG Y,CHENG Y,et al. Antibacterial properties of different sizes of nano-silver to bacteria[J]. China Leather,2016,45(5):1-4.
[9] MORI Y,ONO T,MIYAHIRA Y,et al. Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza A virus[J]. Nanoscale Research Letters,2013,8(1):93-98.
[10] 尹俭俭,李秀景,郑丛龙. 纳米银抗3型副流感病毒作用及机制研究[J]. 江苏大学学报:医学版,2013,23(3):191-196. YIN J J,LI X J,ZHENG C L. Potential mechanism and inhibitory effects of silver nanoparticles on parainfluenza virus type 3[J]. Journal of Jiangsu University(Medicine Edition),2013,23(3):191-196.
[11] MCCARTHY J R,SAZONOVA I Y,SIBEL ERDEM S,et al. Multifunctional nanoagent for thrombus-targeted fibrinolytic therapy[J]. Nanomedicine,2012,7(7):1017-1028.
[12] GUAN Y,CHEN J H,QI X M,et al. Fabrication of biopolymer hydrogel containing Ag nanoparticles for antibacterial property[J]. Industrial & Engineering Chemistry Research,2015,54:7393-7400.
[13] SHRIVASTAVA S,BERA T,SINGH S K,et al. Characterization of antiplatelet properties of silver nanoparticles[J]. ACS Nano,2009,3(6):1357-1364.
[14] HARISH B S,UPPULURI K B,ANBAZHAGAN V. Synthesis of fibrinolytic active silver nanoparticle using wheat bran xylan as a reducing and stabilizing agent[J]. Carbohydrate Polymers,2015,132:104-110.
[15] SHRIVASTAVA S,SINGH S K,MUKHOPADHYAY A,et al. Negative regulation of fibrin polymerization and clot formation by nanoparticles of silver[J]. Colloids and Surfaces B:Biointerfaces,2011,82:241-246.
[16] ABDEL-MOHSEN A M,ABDEL-RAHMAN R M,FOUDA M M G,et al. Preparation,characterization and cytotoxicity of schizophyllan/silver nanoparticle composite[J]. Carbohydrate Polymers,2014,102:238-245.
[17] SHINY P J,MUKHERJEE A,CHANDRASEKARAN N. DNA damage and mitochondria-mediated apoptosis of A549 lung carcinoma cells induced by biosynthesized silver and platinum nanoparticles[J]. RSC Advances,2016,6(33):27775-277787.
[18] 樊国栋,王丽娜,管园园,等. Ag/TiO2纳米催化剂的制备及性能[J]. 化工进展,2016,35(3):820-825. FAN G D,WANG L N,GUAN Y Y,et al. Preparation and properties of Ag/TiO2 nanoparticle catalyst[J]. Chemical Industrial and Engineering Process,2016,35(3):820-825.
[19] 钱国铢,赵金金,朱昱,等. 银纳米粒子上对硝基苯甲酸的催化还原[J]. 光谱实验室,2007,24(4):643-645. QIANG G Z,ZHAO J J,ZHU Y,et al. Catalytic reduction of p-nitrobenzonic acid by silver nanoparticles[J]. Chinese Journal of Spectroscopy Laboratory,2007,24(4):643-645.
[20] 陈玥竹,顾学芳,姜国民,等. 银纳米粒子的制备及对4-硝基苯胺的催化还原作用[J]. 南通大学学报(自然科学版),2013,12(1):45-50. CHEN Y Z,GU X F,JIANG G M,et al. Preparation of silver nanoparticles for catalytic reduction of 4-nitroaniline[J]. Journal of Nantong University (Natural Science Edition),2013,12(1):45-50.
[21] DEVI SYLVIA H,RAJMUHON SINGH N,DAVID SINGH T. A benign approach for synthesis of silver nanoparticles and their application in treatment of organic pollutant[J]. Arabian Journal for Science and Engineering,2016,41(6):2249-2256.
[22] KIM C,JEON H S,EOM T,et al. Achieving selective and efficient electrocatalytic activity for CO2 reduction using immobilized silver nanoparticles[J]. Journal of the American Chemical Society,2015,137:13844-13850.
[23] LIU C H,CHEN B H,HSUEH C L,et al. Hydrogen generation from hydrolysis of sodium borohydride using Ni-Ru nanocomposite as catalysts[J]. International Journal of Hydrogen Energy,2009,34(5):2153-2163.
[24] KIM J D,CHOI H C. Ag nanoparticles supported on grapheme oxide as highly efficient and recyclable catalysts for the reduction of 4-nitrophenol[J]. Bulletin of the Korean Chemical Society,2015,36:2404-2407.
[25] 吴贺君,董知韵,孙勋文,等. 原位还原制备滤纸载纳米银粒子复合材料及其催化特性[J]. 化工进展,2016,35(5):1466-1470. WU H J,DONG Z Y,SUN X W,et al. In situ reduction of silver nanoparticles on filter paper and their catalytic activity[J]. Chemical Industry and Engineering Process,2016,35(5):1466-1470.
[26] QUAN H M,PARK S-U,PARK J. Electrochemical oxidation of glucose on silver nanoparticle-modified composite electrodes[J]. Electrochimica Acta,2010,55:2232-2237.
[27] CLEVE T V,GIBARA E,LINIC S. Electrochemical oxygen reduction reaction on Ag nanoparticles of different shapes[J]. ChemCatChem,2016,8:256-261.
[28] CHENG Y H,LI W Y,FAN X Z,et al. Modified multi-awlled carbon nanotube/Ag nanoparticle composite catalyst for the oxygen reduction reaction in alkaline solution[J]. Electrochimica Acta,2013,111:635-641.
[29] RASHID M,JUN T-S,JUNG Y J,et al. Bimetallic core-shell Ag@Pt nanoparticle-decorated MWNT electrodes for amperometric H2 sensors and direct methanol fuel cells[J]. Sensors and Actuators B:Chemical,2015,208:7-13.
[30] CHEN Z,YU A,AHMED R,et al. Manganese dioxide nanotube and nitrogen-doped carbon nanotube based composite bifunctional catalyst for rechargeable zinc-air bttery[J]. Electrochimica Acta,2012,69:295-300.
[31] SPENDELOW J S,WIECKOWSKI A. Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media[J]. Physical Chemistry Chemical Physics,2007,9:2654-2675.
[32] 任湘菱,唐芳琼. 超细银-金复合颗粒增强酶生物传感器的研究[J]. 化学学报,2002,60(3):393-397. REN X L,TANG F Q. Enhancement effect of Ag-Au nanoparticles on glucose biosensor sensitivity[J]. Acta Chimica Sinica,2002,60(3):393-397.
[33] HUANG J L,XIE Z X,XIE Z Q,et al. Silver nanoparticles coated graphene electrochemical sensor for the ultrasensitive analysis of avian influenza virus H7[J]. Analytica Chimica Acta,2016,913:121-127.
[34] LIU G,WANG Y J,PU X J,et al. One-step synthesis of high conductivity silver nanoparticle-reduced graphene oxide composite films by electron beam irradiation[J]. Applied Surface Science,2015,349:570-575.
[35] SUN L,LI Q H,TANG W J,et al. The use of gold-silver core-shell nanorods self-assembled on a glass substrate can substantially improve the performance of plasmonic affinity biosensors[J]. Microchimica Acta,2014,181(15):1991-1997.
[36] 李俊华,邝代治,冯泳兰,等. 基于银纳米粒子/氧化石墨烯复合薄膜制备TNP电化学传感器[J]. 无机化学学报,2013,29(6):1157-1164. LI J H,KUANG D Z,FENG Y L,et al. Preparation of TNP electrochemical sensor based on silver nanoparticles/grapheme oxide nanocomposite[J]. Chinese Journal of Inorganic Chemistry,2013,29(6):1157-1164.
[37] 展军颜,崔建国,黄燕敏,等. 脱氧胆酸修饰的银纳米粒子比色法检测H2PO4-[J]. 化工进展,2017,36(1):289-293. ZHAN Y J,CUI J G,HUANG Y M,et al. Colorimetric detection of dihydrogen phosphate based on deoxycholic acid modified silver nanoparticles[J]. Chemical Industry and Engineering Process,2017,36(1):289-293.
[38] HAO J R,XIONG B,CHENG X D,et al. High-throughput sulfide sensing with colorimetric analysis of single Au-Ag core-shell nanoparticles[J]. Analytical Chemistry,2014,86(10):4663-4667.
[39] ZHANG Z L,ZHANG X Y,XIN Z Q,et al. Synthesis of monodisperse silver nanoparticles for ink-jet printed flexible electronics[J]. Nanotechnology,2011,22(42):425601-425608.
[40] ZHANG Z L,ZHU W Y. Controllable synthesis and sintering of silver nanoparticles for inkjet-printed flexible electronics[J]. Journal of Alloys and Compounds,2015,649:687-693.
[41] MAGDASSI S,GROUCHKO M,BEREZIN O,et al. Triggering the sintering of silver nanoparticles at room temperature[J]. ACS Nano,2010,4:1943-1948.
[42] GROUCHKO M,KAMYSHNY A,MIHAILESCU C F,et al. Conductive inks with a "Built-in" mechanism that enables sintering at room temperature[J]. ACS Nano,2011,5(4):3354-3359. |