[1] 王平甫, 罗英涛. 近年来我国炭阳极行业的发展特点和技术进步[J]. 炭素技术, 2011, 30(1):40-46. [2] 朱世发, 许建华, 罗英涛, 等. 石油焦高温煅烧技术的探讨和实践[J]. 轻金属, 2010(3):30-34. [3] 郑斌, 刘永启, 王佐任, 等. 煅后石油焦热物理性能研究[J]. 炭素技术, 2013, 32(3):33-35. [4] 孙毅. 中国炭素工业生产节能减排主要技术浅析[J]. 炭素技术, 2012, 31(5):1-5. [5] 张峻松. 炭素煅烧余热烟气加热导热油技术的应用[J]. 四川冶金, 2012, 34(1):38-41. [6] Barati M, Esfahani S, Utigard T A. Energy recovery from high temperature slags[J]. Energy, 2011, 36(9):5440-5449. [7] Kashiwaya Y, In-Nami Y, Akiyama T. Mechanism of the formation of slag particles by the rotary cylinder atomization[J]. ISIJ International, 2010, 50(9):1252-1258. [8] Kashiwaya Y, In-Nami Y, Akiyama T. Development of a rotary cylinder atomizing method of slag for the production of amorphous slag particles[J]. ISIJ International, 2010, 50(9):1245-1251. [9] Maruoka N, Mizuochi T, Purwanto H. Feasibility study for recovering waste heat in the steelmaking industry using a chemical recuperator[J]. ISIJ International, 2004, 44(2):257-262. [10] Nomura T, Okinaka N, Akiyama T. Technology of latent heat storage for high temperature application:A review[J]. ISIJ International, 2010, 50(9):1229-1239. [11] Kashiwaya Y, Akiyama T, In-Nami Y. Latent heat of amorphous slags and their utilization as a high temperature PCM[J]. ISIJ International, 2010, 50(9):1259-1264. [12] Purwanto H, Akiyama T. Hydrogen production from biogas using hot slag[J]. International Journal of Hydrogen Energy, 2006, 31(4):491-495. [13] 刘军祥. 高炉渣余热回收装置传热特性实验研究[D]. 沈阳:东北大学, 2009. [14] 杨凌. 粉体流流动及传热参数藕合特性研究[D]. 大连:大连理工大学, 2007. [15] 武锦涛, 陈纪忠, 阳永荣. 移动床中颗粒接触传热的数学模型[J]. 化工学报, 2006, 57(4):719-725. |