Electric thermostatic water bath and high-low temperature alternating test chamber were used to build a heat storage and release platform. Influence of 9 thickeners on the heat storage and release performance of NH4Al(SO4)2·12H2O was researched and the cycle stability of the modified NH4Al(SO4)2·12H2O was tested and analyzed. The results showed that the heat release performance of NH4Al(SO4)2·12H2O with addition of 2% xanthan gum, 1% guar gum or 1% hydroxyethylcellulose was improved respectively, and the reduction of latent heat was not significant. Under these three addition ratios, the melting point of NH4Al(SO4)2·12H2O was decreased by 1.0℃, 1.3℃, 1.3℃, respectively,the time of heat storage was increased by 94%, 35%, 9%, respectively, the time of phase change of heat storage was increased by 125%, 63%, 5%, respectively, the undercooling was decreased by 43%, 45%, 34%, respectively, the temperature variation during crystallization process was decreased by 84%, 87%, 73%, respectively, the time of heat release was increased by 27%, 11%, 50%, respectively, and the latent heat was decreased by 5.8%, 8.3%, 4.1%, respectively. The modification effect of thickener on the heat release performance of NH4Al(SO4)2·12H2O was affected by the degradation reaction, while the modification effect of 2% xanthan gum was better than the other two thickeners since the temperature variation during crystallization process of corresponding modified NH4Al(SO4)2·12H2O was always maintained above 60℃. After 60 cycles, compared with pure NH4Al(SO4)2·12H2O, the main parameters of modified NH4Al(SO4)2·12H2O changed as follows: the melting point was decreased by 0.2℃, the time of phase change of heat storage was decreased by 15%, the time of heat storage was increased by 13%, the temperature variation during crystallization process was decreased by 87%, the undercooling was decreased by 42%, the time of heat release was increased by 36%, and the latent heat was decreased by 1.6%.