Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (10): 4497-4503.DOI: 10.16085/j.issn.1000-6613.2019-0161
• Energy processes and technology • Previous Articles Next Articles
Hui WANG1(),Zhilian WU1,Zhijun TAI1,Renyan PEI1,Xiaoguang REN1,2()
Received:
2019-01-23
Online:
2019-10-05
Published:
2019-10-05
Contact:
Xiaoguang REN
通讯作者:
任晓光
作者简介:
王辉(1978—),男,博士,高级工程师,研究方向为工业催化。E-mail:基金资助:
CLC Number:
Hui WANG,Zhilian WU,Zhijun TAI,Renyan PEI,Xiaoguang REN. Advances in synthesis of anhydrous ethanol from syngas via carbonylation of dimethyl ether and hydrogenation of methyl acetate[J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4497-4503.
王辉,吴志连,邰志军,裴仁彦,任晓光. 合成气经二甲醚羰基化及乙酸甲酯加氢制无水乙醇的研究进展[J]. 化工进展, 2019, 38(10): 4497-4503.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2019-0161
1 | 宗弘元,马宇春,刘仲能 . 合成气制混合燃料醇的研究进展 [J]. 化工进展, 2015, 34(5): 1269-1276. |
ZONG H Y , MA Y C , LIU Z N . Research progress of higher alcohols synthesis from syngas [J]. Chemical Industry and Engineering Progress, 2015, 34(5): 1269-1276. | |
2 | SPIVEY J J , EGBEBI A . Heterogeneous catalytic synthesis of ethanol from biomass-derived syngas [J]. Chemical Society Reviews, 2007, 36(9): 1514-1541. |
3 | 牟明仁,邹立梅,辛德吉,等 . 对《车用乙醇汽油(E10)》修订内容的分析 [J]. 石油化工技术与经济, 2018, 34(1): 15-18. |
MU M R , ZOU L M , XIN D J , et al . Analysis on the revisions of GB 18351—2017 ethanol gasoline for motor vehicles (E10) standard [J]. Techno-Economics in Petrochemicals, 2018, 34(1): 15-18. | |
4 | 张建伟,方茂东 . 从汽车排放控制谈我国汽油质量战略 [J]. 汽车工程, 2006, 28(1): 43-47. |
ZHANG J W , FANG M D . A study on fuel quality strategy for vehicle emission control [J]. Automotive Engineering, 2006, 28(1): 43-47. | |
5 | SUBRAMANI V , GANGWAL S K . A review of recent literature to search for an efficient catalytic process for the conversion of syngas to ethanol [J]. Energy & Fuels, 2008, 22(2): 814-839. |
6 | FARRELL A E , PLEVIN R J , TURNER B T , et al . Ethanol can contribute to energy and environmental goals [J]. Science, 2006, 311(5760): 506-513. |
7 | CLEVELAND C J , HALL C A , HERENDEEN R A . Energy returns on ethanol production [J]. Science, 2006, 312(5781): 1746-1753. |
8 | ZHOU W , KANG J , CHENG K , et al . Direct conversion of syngas into methyl acetate, ethanol, and ethylene by relay catalysis via the Intermediate dimethyl ether [J]. Angewandte Chemie: International Edition, 2018, 57(37): 12012-12017. |
9 | 宋庆锋,张勇,曾清湖 . 合成气直接转化制乙醇工艺路线的技术经济分析 [J]. 工业催化, 2013, 21(6): 17-21. |
SONG Q F , ZHANG Y , ZENG Q H . Techno-economic analysis of production process of syngas to ethanol [J]. Industrial Catalysis, 2013, 21(6): 17-21. | |
10 | 陈丽,倪春林,张晓伟,等 . 工业乙醇合成技术的比较 [J]. 山东化工, 2018, 47(1): 47-49. |
CHEN L , NI C L , ZHANG X W , et al . Comparison of industrial ethanol synthesis technologies [J]. Shandong Chemical Industry, 2018, 47(1): 47-49. | |
11 | 黄守莹,王悦,马新宾,等 . 合成气经二甲醚/乙酸甲酯制无水乙醇的研究进展 [J]. 化工学报, 2016, 67(1): 240-247. |
HUANG S Y , WANG Y , MA X B , et al . Advances in indirect synthesis of ethanol from syngas via dimethyl ether/methyl acetate [J]. CIESC Jorunal, 2016, 67(1): 240-247. | |
12 | 杨贺勤,刘志成,谢在库 . 绿色化工技术研究新进展 [J]. 化工进展, 2016, 35(6): 1575-1586. |
YANG H Q , LIU Z C , XIE Z K . Review of recent development of green chemical technologies [J]. Chemical Industry and Engineering Progress, 2016, 35(6): 1575-1586. | |
13 | 丁云杰 . 煤经合成气制乙醇和混合高碳伯醇的研究进展 [J]. 煤化工, 2018, 46(1): 1-5. |
DING Y J . Research progress of synthesis of ethanol and mixed high carbon primary alcohols from syngas derived from coal [J]. Coal Chemical Industry, 2018, 46(1): 1-5. | |
14 | 顾佳杰 . 醋酸(酯)加氢制乙醇生产技术及市场分析 [J]. 上海化工, 2015, 40(8): 38-41. |
GU J J . The production techniques and market analysis of acetic acid (acetate) to ethanol by hydrogenation [J]. Shanghai Chemical Industry, 2015, 40(8): 38-41. | |
15 | CHEUNG P , BHAN A , SUNLEY G , et al . Site requirements and elementary steps in dimethyl ether carbonylation catalyzed by acidic zeolites [J]. Journal of Catalysis, 2007, 245(1): 110-123. |
16 | CHEUNG P , BHAN A , SUNLEY G J , et al . Selective carbonylation of dimethyl ether to methyl acetate catalyzed by acidic zeolites [J]. Angewandte Chemie: International Edition, 2006, 45(10): 1617-1620. |
17 | BHAN A , ALLIAN A D , SUNLEY G J , et al . Specificity of sites within eight-membered ring zeolite channels for carbonylation of methyls to acetyls [J]. Journal of the American Chemical Society, 2007, 129(16): 4919-4924. |
18 | BHAN A , IGLESIA E . A link between reactivity and local structure in acid catalysis on zeolites [J]. Accounts of Chemical Research, 2008, 41(4): 559-567. |
19 | GOUNDER R , IGLESIA E . The roles of entropy and enthalpy in stabilizing ion-pairs at transition states in zeolite acid catalysis [J]. Accounts of Chemical Research, 2012, 45(2): 229-238. |
20 | BORONAT M , MARTINEZ-SANCHEZ C , LAW D, et al . Enzyme-like specificity in zeolites: a unique site position in mordenite for selective carbonylation of methanol and dimethyl ether with CO [J]. Journal of the American Chemical Society, 2008, 130(48): 16316-16323. |
21 | BORONAT M , MARTINEZ C , CORMA A . Mechanistic differences between methanol and dimethyl ether carbonylation in side pockets and large channels of mordenite [J]. Physical Chemistry Chemical Physics, 2011, 13(7): 2603-2612. |
22 | MOLINER M , MARTINEZ C , CORMA A . Multipore zeolites: synthesis and catalytic applications [J]. Angewandte Chemie: International Edition, 2015, 54(12): 3560-3579. |
23 | RASMUSSEN D B , CHRISTENSEN J M , TEMEL B , et al . Ketene as a reaction intermediate in the carbonylation of dimethyl ether to methyl acetate over mordenite [J]. Angewandte Chemie: International Edition, 2015, 54(25): 7261-7264. |
24 | HE T , REN P , LIU X , et al . Direct observation of DME carbonylation in the different channels of H-MOR zeolite by continuous-flow solid-state NMR spectroscopy [J]. Chemical Communications, 2015, 51(94): 16868-16870. |
25 | ZHOU H , ZHU W , SHI L , et al . In situ DRIFT study of dimethyl ether carbonylation to methyl acetate on H-mordenite [J]. Journal of Molecular Catalysis A: Chemical, 2016, 417: 1-9. |
26 | CAI K , HUANG S , LI Y , et al . Influence of acid strength on the reactivity of dimethyl ether carbonylation over H-MOR [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(2): 2027-2034. |
27 | LI Y , HUANG S , CHENG Z , et al . Synergy between Cu and Brønsted acid sites in carbonylation of dimethyl ether over Cu/H-MOR [J]. Journal of Catalysis, 2018, 365: 440-449. |
28 | LIU Z , YI X , WANG G , et al . Roles of 8-ring and 12-ring channels in mordenite for carbonylation reaction: from the perspective of molecular adsorption and diffusion [J]. Journal of Catalysis, 2019, 369: 335-344. |
29 | 赵娜,牛君阳,李新刚,等 . 预处理条件及金属离子改性对H-MOR分子筛的DME羰基化性能影响 [J]. 化工学报, 2015, 66(9): 3504-2510. |
ZHAO N , NIU J Y , LI X G , et al . Influence of pretreatment and metal cation modification of H-MOR zeolite on performance of DME carbonylation [J]. CIESC Jorunal, 2015, 66(9): 3504-2510. | |
30 | 李秀杰,刘盛林,徐龙伢,等 . 乙酸甲酯合成路线及催化剂研究进展 [J]. 化工进展, 2012, 31(s1): 163-167. |
LI X J , LIU S L , XU L Y , et al . Advances in synthesis routes and catalysts of methyl acetate [J]. Chemical Industry and Engineering Progress, 2012, 31(s1): 163-167. | |
31 | LIU J , XUE H , HUANG X , et al . Stability enhancement of H-mordenite in dimethyl ether carbonylation to methyl acetate by pre-adsorption of pyridine [J]. Chinese Journal of Catalysis, 2010, 31(7): 729-738. |
32 | XUE H , HUANG X , DITZEL E , et al . Coking on micrometer- and nanometer-sized mordenite during dimethyl ether carbonylation to methyl acetate [J]. Chinese Journal of Catalysis, 2013, 34(8): 1496-1503. |
33 | XUE H , HUANG X , DITZEL E , et al . Dimethyl ether carbonylation to methyl acetate over nanosized mordenites [J]. Industrial & Engineering Chemistry Research, 2013, 52(33): 11510-11515. |
34 | WANG M X , HUANG J L , LV J , et al . Modifying the acidity of H-MOR and its catalytic carbonylation of dimethyl ether [J]. Chinese Journal of Catalysis, 2016, 37(9): 1530-1538. |
35 | ZHAN H , HUANG S , LI Y , et al . Elucidating the nature and role of Cu species in enhanced catalytic carbonylation of dimethyl ether over Cu/H-MOR [J]. Catalysis Science & Technology, 2015, 5(9): 4378-4389. |
36 | LIU Y , ZHAO N , XIAN H , et al . Facilely synthesized H-mordenite nanosheet assembly for carbonylation of dimethyl ether [J]. ACS Applied Materials & Interfaces, 2015, 7(16): 8398-8403. |
37 | ZHOU H , ZHU W , SHI L , et al . Promotion effect of Fe in mordenite zeolite on carbonylation of dimethyl ether to methyl acetate [J]. Catalysis Science & Technology, 2015, 5(3): 1961-1968. |
38 | LI L , WANG Q , LIU H , et al . Preparation of spherical mordenite zeolite assemblies with excellent catalytic performance for dimethyl ether carbonylation [J]. ACS Applied Materials & Interfaces, 2018, 10(38): 32239-32246. |
39 | FENG X , YAO J , LI H , et al . A brand new zeolite catalyst for carbonylation reaction [J]. Chemical Communications, 2019, 55(8): 1048-1051. |
40 | YE R P , LIN L , LI Q , et al . Recent progress in improving the stability of copper-based catalysts for hydrogenation of carbon-oxygen bonds [J]. Catalysis Science & Technology, 2018, 8(14): 3428-3449. |
41 | 杨天宇,曹祖宾,韩冬云,等 . 乙酸甲酯催化加氢制乙醇工艺 [J]. 化工进展, 2015, 34(7): 1872-1877. |
YANG T Y , CAO Z B , HAN D Y , et al . Process research on the catalytic hydrogenation of methyl acetate to ethanol[J]. Chemical Industry and Engineering Progress, 2015, 34(7): 1872-1877. | |
42 | SANTIAGO M A N , SĂNCHEZ-CASTILLO M A , CORTRIGHT R D , et al . Catalytic reduction of acetic acid, methyl acetate, and ethyl acetate over silica-supported copper [J]. Journal of Catalysis, 2000, 193(1): 16-28. |
43 | SAN X, ZHANG Y , SHEN W , et al . New synthesis method of ethanol from dimethyl ether with a synergic effect between the zeolite catalyst and metallic catalyst [J]. Energy & Fuels, 2009, 23(5): 2843-2844. |
44 | WANG D , YANG G , MA Q , et al . Confinement effect of carbon nanotubes: copper nanoparticles filled carbon nanotubes for hydrogenation of methyl acetate [J]. ACS Catalysis, 2012, 2(9): 1958-1966. |
45 | WANG D , SUN X , XING C , et al . Copper nanoparticles decorated inside or outside carbon nanotubes used for methyl acetate hydrogenation [J]. Journal of Nanoscience and Nanotechnology, 2013, 13(2): 1274-1277. |
46 | JU I B , JEON W , PARK M J , et al . Kinetic studies of vapor-phase hydrogenolysis of butyl butyrate to butanol over Cu/ZnO/Al2O3 catalyst [J]. Applied Catalysis A: General, 2010, 387(1/2): 100-106. |
47 | LIU Y , MURATA K , INABA M , et al . Synthesis of ethanol from methanol and syngas through an indirect route containing methanol dehydrogenation, DME carbonylation, and methyl acetate hydrogenolysis [J]. Fuel Processing Technology, 2013, 110: 206-213. |
48 | WANG S , GUO W , WANG H , et al . Effect of the Cu/SBA-15 catalyst preparation method on methyl acetate hydrogenation for ethanol production [J]. New Journal of Chemistry, 2014, 2014, 38(7): 2792-2800. |
49 | WANG Y , SHEN Y , ZHAO Y , et al . Insight into the balancing effect of active Cu species for hydrogenation of carbon-oxygen bonds [J]. ACS Catalysis, 2015, 5(10): 6200-6208. |
50 | YE C L , GUO C L , ZHANG J L . Highly active and stable CeO2-SiO2 supported Cu catalysts for the hydrogenation of methyl acetate to ethanol [J]. Fuel Processing Technology, 2016, 143: 219-224. |
51 | HUANG X , MA M , MIAO S , et al . Hydrogenation of methyl acetate to ethanol over a highly stable Cu/SiO2 catalyst: reaction mechanism and structural evolution [J]. Applied Catalysis A: General, 2017, 531: 79-88. |
52 | 韩海波,王有和,阎子峰,等 . MOR/SBA-15复合分子筛的合成、表征及其催化性能评价 [J]. 无机化学, 2018, 34(8): 1477-1482. |
HAN H B , WANG Y H , YAN Z F , et al . Synthesis, characterization and catalytic performance of MOR/SBA-15 composite zeolite [J]. Chinese Journal of Inorganic Chemistry, 2018, 34(8): 1477-1482. |
[1] | LI Mengyuan, GUO Fan, LI Qunsheng. Simulation and optimization of the third and fourth distillation columns in the recovery section of polyvinyl alcohol production [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 113-123. |
[2] | SHENG Weiwu, CHENG Yongpan, CHEN Qiang, LI Xiaoting, WEI Jia, LI Linge, CHEN Xianfeng. Operating condition analysis of the microbubble and microdroplet dual-enhanced desulfurization reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 142-147. |
[3] | XU Chenyang, DU Jian, ZHANG Lei. Chemical reaction evaluation based on graph network [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 205-212. |
[4] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[5] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[6] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[7] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[8] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[9] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[10] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[11] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[12] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[13] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[14] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[15] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |