Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (10): 4606-4613.DOI: 10.16085/j.issn.1000-6613.2018-2451
• Materials science and technology • Previous Articles Next Articles
Zheng FAN,Xianchang TANG,Xu ZHANG,Chang LI,Guoliang ZHANG()
Received:
2018-12-21
Online:
2019-10-05
Published:
2019-10-05
Contact:
Guoliang ZHANG
通讯作者:
张国亮
作者简介:
范铮(1964—),男,副教授,研究方向为生物技术。
基金资助:
CLC Number:
Zheng FAN,Xianchang TANG,Xu ZHANG,Chang LI,Guoliang ZHANG. Progress of on enzyme immobilization with metal-organic frameworks[J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4606-4613.
范铮,唐咸昌,张旭,李畅,张国亮. 金属有机骨架材料载体用于酶固定化的研究进展[J]. 化工进展, 2019, 38(10): 4606-4613.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-2451
方法 | 优势 | 劣势 |
---|---|---|
表面吸附 | 操作简单;绿色化学 | 酶与载体作用力弱,易流失;耗时;强静电相互作用可能影响蛋白质构象,从而导致酶活性下降 |
共价结合 | 酶与载体之间作用力强 | 操作复杂;化学试剂引入可能对酶活性有影响 |
孔道包埋 | 酶负载率高且不易流失 | 对MOFs孔径(大多限于介孔)、酶尺寸、形状都有要求 |
原位合成 | 制备条件温和,酶活性不受影响;快速 | 合成条件限于水溶液;MOFs种类较少 |
方法 | 优势 | 劣势 |
---|---|---|
表面吸附 | 操作简单;绿色化学 | 酶与载体作用力弱,易流失;耗时;强静电相互作用可能影响蛋白质构象,从而导致酶活性下降 |
共价结合 | 酶与载体之间作用力强 | 操作复杂;化学试剂引入可能对酶活性有影响 |
孔道包埋 | 酶负载率高且不易流失 | 对MOFs孔径(大多限于介孔)、酶尺寸、形状都有要求 |
原位合成 | 制备条件温和,酶活性不受影响;快速 | 合成条件限于水溶液;MOFs种类较少 |
方法 | 酶 | MOF | 应用 | 参考文献 |
---|---|---|---|---|
表面吸附 | 微过氧化物酶(MP-11) | [Cu(OOC-C6H4-C6H4-COO)· | 催化 | [ |
表面吸附 | 葡萄糖脱氢酶(GDH) | ZIF-7、 ZIF-8、 ZIF-67、 ZIF-68、 ZIF-70 | 传感 | [ |
表面吸附 | 洋葱伯克霍尔德氏菌脂肪酶(BCL) | An-ZIF-8 | 酯水解和酯交换 | [ |
表面吸附 | NBD标记的胰蛋白酶 | MIL-100(Cr)、 MIL-101(Cr)、 UiO-66 (Zr)、 CYCU-4(Al) | 蛋白质消化 | [ |
共价结合 | 胰蛋白酶(Try) | MIL-101(Cr)、 MIL-88B(Cr)、 MIL-88B-NH 2(Cr) | 蛋白质组学 | [ |
共价结合 | 链霉亲和素(SA) | HKUST-1 | DNA传感器 | [ |
共价结合 | β-葡萄糖苷酶 | NH2-MIL-53(A1), ZIF-67, ZIF-8 | 催化 | [ |
孔道包埋 | HRP、 Cyt C、 MP-11 | PCN-332、 PCN-333 | 催化 | [ |
孔道包埋 | 胰岛素、 有机磷酸酐酶(OPAA) | NU-100x、 PCNs | 解毒 | [ |
孔道包埋 | 葡萄糖氧化酶(GOx), HRP | PCN-888 | 催化 | [ |
原位合成 | 卵清蛋白、 核糖核酸酶A、 人血清白蛋白、 吡咯喹啉醌依赖性葡萄糖脱氢酶、 脂肪酶、 血红蛋白、 溶菌酶、 胰岛素、 HRP、 Try、 脲酶和寡核苷酸 | ZIF-8、 HKUST-1、 Eu/Tb-BDC、 MIL-88A | 生物样本库、生物反应器 | [ |
原位合成 | Cyt C、 HRP、 脂肪酶(经PVP修饰) | ZIF-8、 ZIF-10 | 催化,检测 | [ |
原位合成 | GOx, HRP | ZIF-8 | 催化,检测 | [ |
方法 | 酶 | MOF | 应用 | 参考文献 |
---|---|---|---|---|
表面吸附 | 微过氧化物酶(MP-11) | [Cu(OOC-C6H4-C6H4-COO)· | 催化 | [ |
表面吸附 | 葡萄糖脱氢酶(GDH) | ZIF-7、 ZIF-8、 ZIF-67、 ZIF-68、 ZIF-70 | 传感 | [ |
表面吸附 | 洋葱伯克霍尔德氏菌脂肪酶(BCL) | An-ZIF-8 | 酯水解和酯交换 | [ |
表面吸附 | NBD标记的胰蛋白酶 | MIL-100(Cr)、 MIL-101(Cr)、 UiO-66 (Zr)、 CYCU-4(Al) | 蛋白质消化 | [ |
共价结合 | 胰蛋白酶(Try) | MIL-101(Cr)、 MIL-88B(Cr)、 MIL-88B-NH 2(Cr) | 蛋白质组学 | [ |
共价结合 | 链霉亲和素(SA) | HKUST-1 | DNA传感器 | [ |
共价结合 | β-葡萄糖苷酶 | NH2-MIL-53(A1), ZIF-67, ZIF-8 | 催化 | [ |
孔道包埋 | HRP、 Cyt C、 MP-11 | PCN-332、 PCN-333 | 催化 | [ |
孔道包埋 | 胰岛素、 有机磷酸酐酶(OPAA) | NU-100x、 PCNs | 解毒 | [ |
孔道包埋 | 葡萄糖氧化酶(GOx), HRP | PCN-888 | 催化 | [ |
原位合成 | 卵清蛋白、 核糖核酸酶A、 人血清白蛋白、 吡咯喹啉醌依赖性葡萄糖脱氢酶、 脂肪酶、 血红蛋白、 溶菌酶、 胰岛素、 HRP、 Try、 脲酶和寡核苷酸 | ZIF-8、 HKUST-1、 Eu/Tb-BDC、 MIL-88A | 生物样本库、生物反应器 | [ |
原位合成 | Cyt C、 HRP、 脂肪酶(经PVP修饰) | ZIF-8、 ZIF-10 | 催化,检测 | [ |
原位合成 | GOx, HRP | ZIF-8 | 催化,检测 | [ |
1 | GROGER H , MAY O, HUSKEN H , et al . Enantioselective enzymatic reactions in miniemulsions as efficient “nanoreactors”[J]. Angewandte Chemie: International Edition, 2006, 45(10): 1645-1648. |
2 | ZHAO H . Highlights of biocatalysis and biomimetic catalysis[J]. ACS Catalysis, 2011, 1(9):1119-1120. |
3 | LORENZ P , ECK J . Metagenomics and industrial applications[J]. Nature Reviews Microbiology, 2005, 3(6): 510-516. |
4 | DICOSIMO R , MCAULIFFE J , POULOSE A J , et al . Industrial use of immobilized enzymes[J]. Chemical Society Reviews, 2013, 42(15): 6437-6474. |
5 | FRANSSEN M C , STEUNENBERG P , SCOTT E L , et al . Immobilised enzymes in biorenewable production[J]. Chemical Society Reviews, 2013, 42(15): 6491-6533. |
6 | SARROUH B , SANTOS T M , MIYOSHI A , et al . Up-to-date insight on industrial enzymes applications and global market[J]. Journal of Bioprocessing & Biotechniques, 2012, S4: 002. |
7 | SHELDON R A , PELT S VAN . Enzyme immobilisation in biocatalysis: why, what and how[J]. Chemical Society Reviews, 2013, 42(15): 6223-6235. |
8 | 李存存, 张光亚 . 酶定向固定化方法及应用的研究进展[J]. 化工进展, 2013, 32(10): 2467-2474. |
LI C C , ZHANG G Y . Research progress of site-specific immobilization of enzymes and application[J]. Chemical Industry and Engineering Progress, 2013, 32(10): 2467-2474. | |
9 | YAGHI O M , LI G , LI H . Selective binding and removal of guests in a microporous metal-organic framework[J]. Nature, 1995, 378(6558):703-706. |
10 | 郑丽君, 龚奇菡, 李雪静, 等 . 金属有机骨架用于气体存储、吸附分离的研究进展[J]. 化工进展, 2017, 36(11): 4116-4123. |
ZHENG L J , GONG Q H , LI X J , et al . Progress of metal-organic frameworks for selective gas storage, adsorption and separation[J]. Chemical Industry and Engineering Progress, 2017, 36(11): 4116-4123. | |
11 | LI W , ZHANG Y , LI Q , et al . Metal-organic framework composite membranes: synthesis and separation applications[J]. Chemical Engineering Science, 2015, 135: 232-257. |
12 | LI W , ZHANG Y , ZHANG C , et al . Transformation of metal-organic frameworks for molecular sieving membranes[J]. Nature Communications, 2016, 7: 11315. |
13 | LI W , SU P , LI Z , et al . Ultrathin metal-organic framework membrane production by gel-vapour deposition[J]. Nature Communications, 2017, 8: 406. |
14 | QIN L , LI Z , XU Z , et al . Organic-acid-directed assembly of iron-carbon oxides nanoparticles on coordinatively unsaturated metal sites of MIL-101 for green photochemical oxidation[J]. Applied Catalysis B: Environmental, 2015, 179: 500-508. |
15 | REICHARDT C , UTGENANNT S , STAHMANN K P , et al . Highly stable adsorptive and covalent immobilization of thermomyces lanuginosus lipase on tailor-made porous carbon material[J]. Biochemical Engineering Journal, 2018, 138: 63-73. |
16 | GILL I , BALLESTEROS A . Encapsulation of biologicals within silicate, siloxane, and hybrid sol-gel polymers: an efficient and generic approach[J]. Journal of the American Chemical Society, 1998, 120(34): 8587-8598. |
17 | LEE E S, KWON M J , LEE H, et al . Stabilization of protein encapsulated in poly (lactide-co-glycolide) microspheres by novel viscous S/W/O/W method[J]. International Journal of Pharmaceutics, 2007, 331(1): 27-37. |
18 | LEE K Y, YUK S H . Polymeric protein delivery systems[J]. Progress in Polymer Science, 2007, 32(7): 669-697. |
19 | SHENG W , XI Y , ZHANG L , et al . Enhanced activity and stability of papain by covalent immobilization on porous magnetic nanoparticles[J]. International Journal of Biological Macromolecules, 2018, 114: 143-148. |
20 | HARTMANN M , JUNG D . Biocatalysis with enzymes immobilized on mesoporous hosts: the status quo and future trends[J]. Journal of Materials Chemistry, 2010, 20(5): 844-857. |
21 | LIAN X , FANG Y , JOSEPH E , et al . Enzyme-MOF (metal-organic framework) composites[J]. Chemical Society Reviews, 2017, 46(11): 3386-3401. |
22 | GKANIATSOU E , SICARD C , RICOUX R , et al . Metal-organic frameworks: a novel host platform for enzymatic catalysis and detection[J]. Materials Horizons, 2017, 4(1): 55-63. |
23 | DOONAN C , RICCÒ R , LIANG K , et al . Metal-organic frameworks at the biointerface: synthetic strategies and applications[J]. Accounts of Chemical Research, 2017, 50(6): 1423-1432. |
24 | CUI J , REN S , SUN B , et al . Optimization protocols and improved strategies for metal-organic frameworks for immobilizing enzymes: current development and future challenges[J]. Coordination Chemistry Reviews, 2018, 370: 22-41. |
25 | LYKOURINOU V , CHEN Y , WANG X S , et al . Immobilization of MP-11 into a mesoporous metal-organic framework, MP-11@ mesoMOF: a new platform for enzymatic catalysis[J]. Journal of the American Chemical Society, 2011, 133(27): 10382-10385. |
26 | CHEN Y , LYKOURINOU V , HOANG T , et al . Size-selective biocatalysis of myoglobin immobilized into a mesoporous metal-organic framework with hierarchical pore sizes[J]. Inorganic Chemistry, 2012, 51(17): 9156-9158. |
27 | FENG D , LIU T F , SU J , et al . Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation[J]. Nature Communications, 2015, 6: 5979. |
28 | LI P , MOON S Y , GUELTA M A , et al . Encapsulation of a nerve agent detoxifying enzyme by a mesoporous zirconium metal-organic framework engenders thermal and long-term stability[J]. Journal of the American Chemical Society, 2016, 138(26): 8052-8055. |
29 | LIANG K , RICCÒ R , DOHERTY C M , et al . Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules[J]. Nature Communications, 2015, 6: 7240. |
30 | CHEN Y , LI P , MODICA J A , et al . Acid-resistant mesoporous metal-organic framework toward oral insulin delivery: protein encapsulation, protection, and release[J]. Journal of the American Chemical Society, 2018, 140(17): 5678-5681. |
31 | PISKLAK T J , MACIAS M , COUTINHO D H , et al . Hybrid materials for immobilization of MP-11 catalyst[J]. Topics in Catalysis, 2006, 38(4): 269-278. |
32 | MA W , JIANG Q , YU P , et al . Zeolitic imidazolate framework-based electrochemical biosensor for in vivo electrochemical measurements[J]. Analytical Chemistry, 2013, 85(15): 7550-7557. |
33 | CHEONG L Z , WEI Y , WANG H , et al . Facile fabrication of a stable and recyclable lipase@amine-functionalized ZIF-8 nanoparticles for esters hydrolysis and transesterification[J]. Journal of Nanoparticle Research, 2017, 19(8): 280. |
34 | LIU W L , WU C Y , CHEN C Y , et al . Fast multipoint immobilized MOF bioreactor[J]. Chemistry:A European Journal, 2014, 20(29): 8923-8928. |
35 | SHIH Y H , LO S H, YANG N S , et al . Trypsin-immobilized metal-organic framework as a biocatalyst in proteomics analysis[J]. ChemPlusChem, 2012, 77(11): 982-986. |
36 | LING P , LEI J , ZHANG L , et al . Porphyrin-encapsulated metal-organic frameworks as mimetic catalysts for electrochemical DNA sensing via allosteric switch of hairpin DNA[J]. Analytical Chemistry, 2015, 87(7): 3957-3963. |
37 | DOHERTY C M , GRENCI G , RICCÒ R , et al . Combining UV lithography and an imprinting technique for patterning metal-organic frameworks[J]. Advanced Materials, 2013, 25(34): 4701-4705. |
38 | CHEN Y , HAN S , LI X , et al . Why does enzyme not leach from metal-organic frameworks (MOFs)? Unveiling the interactions between an enzyme molecule and a MOF[J]. Inorganic Chemistry, 2014, 53(19): 10006-10008. |
39 | ZHANG H , LV Y , TAN T , et al . Atomistic simulation of protein encapsulation in metal-organic frameworks[J]. The Journal of Physical Chemistry B, 2016, 120(3): 477-484. |
40 | LI P , MOON S Y , GUELTA M A , et al . Nanosizing a metal-organic framework enzyme carrier for accelerating nerve agent hydrolysis[J]. ACS Nano, 2016, 10(10): 9174-9182. |
41 | RICCÒ R , LIANG W , LI S , et al . Metal-organic frameworks for cell and virus biology: a perspective[J]. ACS Nano, 2018, 12(1): 13-23. |
42 | LI W , ZHANG Y , XU Z , et al . Assembly of MOF microcapsules with size-selective permeability on cell walls[J]. Angewandte Chemie, 2016, 128(3): 967-971. |
43 | LYU F, ZHANG Y , ZARE R N , et al . One-pot synthesis of protein-embedded metal-organic frameworks with enhanced biological activities[J]. Nano Letters, 2014, 14(10): 5761-5765. |
44 | LIANG K , COGHLAN C J , BELL S G , et al . Enzyme encapsulation in zeolitic imidazolate frameworks: a comparison between controlled co-precipitation and biomimetic mineralisation[J]. Chemical Communications, 2015, 52(3):473-476. |
45 | LIANG K , RICHARDSON J J , CUI J , et al . Metal-organic framework coatings as cytoprotective exoskeletons for living cells[J]. Advanced Materials, 2016, 28(36): 7910-7914. |
46 | LIANG K , Richardson J J , DOONAN C J , et al . An enzyme-coated metal-organic framework shell for synthetically adaptive cell survival[J]. Angewandte Chemie: International Edition, 2017, 56(29): 8510-8515. |
47 | 高飞, 马光辉, 王平, 等 . 生化微反应器的构建与应用[C] //第三届全国化学工程与生物化工年会论文摘要集(上), 2006:1. |
GAO F , MA G H , WANG P , et al . Construction and application of bio-microreactor[C] //Abstract of the 3rd National Conference of Chemical Engineering and Biochemical Industry (Ⅰ), 2006:1. | |
48 | ORIVE G , HERNANDEZ R M , GASCON A R , et al . Cell encapsulation: promise and progress[J]. Nature Medicine, 2003, 9(1): 104-107. |
49 | LEDUC P R , WONG M S , FERREIRA P M , et al . Towards an in vivo biologically inspired nanofactory[J]. Nature Nanotechnology, 2007, 2(1): 3-7. |
50 | JEONG G Y , RICCO R , LIANG K , et al . Bioactive MIL-88A framework hollow spheres via interfacial reaction in-droplet microfluidics for enzyme and nanoparticle encapsulation[J]. Chemistry of Materials, 2015, 27(23): 7903-7909. |
51 | AMELOOT R , VERMOORTELE F , VANHOVE W , et al . Interfacial synthesis of hollow metal-organic framework capsules demonstrating selective permeability[J]. Nature Chemistry, 2011, 3(5): 382-387. |
52 | HUO J , AGUILERA-SIGALAT J , EL-HANKARI S , et al . Magnetic MOF microreactors for recyclable size-selective biocatalysis[J]. Chemical Science, 2015, 6(3): 1938-1943. |
53 | GARCIA-GALAN C , Á BERENGUER-MURCIA , FERNANDEZ-LAFUENTE R , et al . Potential of different enzyme immobilization strategies to improve enzyme performance[J]. Advanced Synthesis & Catalysis, 2011, 353(16): 2885-2904. |
54 | WU X , GE J , YANG C , et al . Facile synthesis of multiple enzyme-containing metal-organic frameworks in a biomolecule-friendly environment[J]. Chemical Communications, 2015, 51(69): 13408-13411. |
55 | SCHOFFELEN S , HEST J C M VAN . Multi-enzyme systems: bringing enzymes together in vitro [J]. Soft Matter., 2012, 8(6): 1736-1746. |
56 | LIN J L , PALOMEC L , WHEELDON I . Design and analysis of enhanced catalysis in scaffolded multienzyme cascade reactions[J]. ACS Catalysis, 2014, 4(2): 505-511. |
57 | LIAN X , CHEN Y P , LIU T F , et al . Coupling two enzymes into a tandem nanoreactor utilizing a hierarchically structured MOF[J]. Chemical Science, 2016, 7(12): 6969-6973. |
[1] | LI You, WU Yue, ZHONG Yu, LIN Qixuan, REN Junli. Pretreatment of wheat straw with acidic molten salt hydrate for xylose production and its effect on enzymatic hydrolysis efficiency [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4974-4983. |
[2] | CHEN Na, ZHANG Xiaojing, ZHANG Nan, MA Bingbing, ZHANG Han, YANG Haojie, ZHANG Hongzhong. Effect of quenching enzymes on partial nitrification-mixed autotrophic nitrogen removal system [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3816-3823. |
[3] | LU Shaojie, LIU Jia, JI Qianzhu, LI Ping, HAN Yueyang, TAO Min, LIANG Wenjun. Preparation of diatomaceous earth-based composite filler and its xylene removal performance by a biotrickling filter [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3884-3892. |
[4] | QIN Kai, YANG Shilin, LI Jun, CHU Zhenyu, BO Cuimei. A Kalman filter algorithm-based high precision detection method for glucoamylase biosensors [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3177-3186. |
[5] | ZHANG Yaodan, SUN Ruoxi, CHEN Pengcheng. Advances of multi-enzyme co-immobilization carrier based on cascade reactions [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3167-3176. |
[6] | ZHU Yajing, XU Yan, JIAN Meipeng, LI Haiyan, WANG Chongchen. Progress of metal-organic frameworks for uranium extraction from seawater [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3029-3048. |
[7] | YUE Xin, LI Chunying, SUN Dao’an, LI Jiangwei, DU Yongmei, MA Hui, LYU Jian. Progress on heterogeneous catalysts for cyclopropanation of diazo compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2390-2401. |
[8] | MAO Menglei, MENG Lingding, GAO Rui, MENG Zihui, LIU Wenfang. Research progress on enzyme immobilization on porous framework materials [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2516-2535. |
[9] | MENG Lingding, MAO Menglei, LIAO Qiyong, MENG Zihui, LIU Wenfang. Recent advance in stability of carbonic anhydrase and formate dehydrogenase [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 436-447. |
[10] | LIU Yali, ZHANG Hongwei, KANG Xiaorong. Effect and mechanisms of microplastics on anaerobic digestion of sludge [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 5037-5046. |
[11] | PU Fulong, WU Shangwei, ZHENG Yingling, ZHENG Yuyi, HOU Xuedan. Effect of lignin extracted by lactic acid-based deep eutectic solvent from rice straw on cellulase hydrolysis efficiency [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4937-4945. |
[12] | ZHU Xiao, ZHU Junyong, ZHANG Yatao. Research progress of metal organic framework/polyamide thin film nanocomposite membrane [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4314-4326. |
[13] | TANG Ting, ZHOU Wenfeng, WANG Zhi, ZHU Chenjie, XU Jingliang, ZHUANG Wei, YING Hanjie, OUYANG Pingkai. Advances of multienzymes co-immobilization technology for sugar catalysis [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2636-2648. |
[14] | GAO Bo, FENG Xudong, LI Chun. Visual and high-throughput method for detecting the activity of aspartate transcarbamylase [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2054-2059. |
[15] | ZHANG Yan, WANG Wei, XIE Rui, JU Xiaojie, LIU Zhuang, CHU Liangyin. Controllable fabrication of polymeric microparticles loaded with enzyme@ZIF-8 [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2022-2028. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |