Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (10): 4614-4622.DOI: 10.16085/j.issn.1000-6613.2019-0054
• Materials science and technology • Previous Articles Next Articles
Chuan ZHOU(),Bo YUAN,Shouxin ZHANG,Xiaobing YANG(),Jinyi ZHONG()
Received:
2019-01-09
Online:
2019-10-05
Published:
2019-10-05
Contact:
Xiaobing YANG,Jinyi ZHONG
通讯作者:
杨小兵,钟近艺
作者简介:
周川(1990—),男,硕士,研究方向为功能防护材料与个体防护技术。E-mail:基金资助:
CLC Number:
Chuan ZHOU,Bo YUAN,Shouxin ZHANG,Xiaobing YANG,Jinyi ZHONG. Progress in synthesis and chemical defense of UiO-66 Zr-based metal-organic framework[J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4614-4622.
周川,原博,张守鑫,杨小兵,钟近艺. 锆基金属有机骨架UiO-66的合成及在化学防护领域中的研究进展[J]. 化工进展, 2019, 38(10): 4614-4622.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2019-0054
1 | DECOSTE J B , PETERSON G W . Metal-organic frameworks for air purification of toxic chemicals[J]. Chemical Reviews, 2014, 114(11): 5695-5727. |
2 | TU T N , NGUYEN M V , NGUYEN H L , et al . Designing bipyridine-functionalized zirconium metal-organic frameworks as a platform for clean energy and other emerging applications[J]. Coordination Chemistry Reviews, 2018, 364: 33-50. |
3 | HU J , LIU Y , LIU J , et al . Effects of incorporated oxygen and sulfur heteroatoms into ligands for CO2/N2 and CO2/CH4 separation in metal-organic frameworks: a molecular simulation study[J]. Fuel, 2018, 226: 591-597. |
4 | STASSEN I , BUEKEN B , REINSCH H , et al . Towards metal-organic framework based field effect chemical sensors: UiO-66-NH2 for nerve agent detection[J]. Chemical Science, 2016, 7(9): 5827-5832. |
5 | JI P , DRAKE T , MURAKARNI A , et al . Tuning lewis acidity of metal-organic frameworks via perfluorination of bridging ligands: spectroscopic, theoretical, and catalytic studies[J]. Journal of the American Chemical Society, 2018, 140(33): 10553-10561. |
6 | CAVKA J H , JAKOBSEN S , OLSBYE U , et al . A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability[J]. Journal of the American Chemical Society, 2008, 130(42): 13850-13851. |
7 | SCHAATE A , ROY P, GODT A , et al . Modulated synthesis of Zr-based metal-organic frameworks: from nano to single crystals[J]. Chemistry: A European Journal, 2011, 17(24): 6643-6651. |
8 | REN J , LANGMI H W , NORTH B C , et al . Modulated synthesis of zirconium-metal organic framework (Zr-MOF) for hydrogen storage applications[J]. International Journal of Hydrogen Energy, 2014, 39(2): 890-895. |
9 | BARCIA P S , GUIMARAES D , MENDES P A P , et al . Reverse shape selectivity in the adsorption of hexane and xylene isomers in MOF UiO-66[J]. Microporous and Mesoporous Materials, 2011, 139(1/2/3): 67-73. |
10 | KATZ M J , BROWN Z J , COLON Y J , et al . A facile synthesis of UiO-66, UiO-67 and their derivatives[J]. Chemical Communications, 2013, 49(82): 9449-9451. |
11 | HAN Y , LIU M , LI K , et al . Cu2O Mediated synthesis of metal organic framework UiO-66 in nanometer scale[J]. Crystal Growth & Design, 2017, 17(2): 685-692. |
12 | UZAREVIC K , WANG T C , MOON S Y , et al . Mechanochemical and solvent-free assembly of zirconium-based metal-organic frameworks[J]. Chemical Communications, 2016, 52(10): 2133-2136. |
13 | HUANG Y H , LO W S, KUO Y W, et al . Green and rapid synthesis of zirconium metalorganic frameworks via mechanochemistry: UiO-66 analog nanocrystals obtained in one hundred seconds[J]. Chemical Communications, 2017, 53(43): 5818-5821. |
14 | LI Y , LIU Y , GAO W , et al . Microwave-assisted synthesis of UiO-66 and its adsorption performance towards dyes[J]. CrystEngComm, 2014, 16(30): 7037-7042. |
15 | YANG L , CAI R , QI W , et al . Microwave synthesis and hydrogen storage performance of UiO-66[J]. Chinese Journal of Power Sources, 2016, 40(8): 1605-1608. |
16 | REN J , SEGAKWENG T , LANGMI H W , et al . Microwave-assisted modulated synthesis of zirconium-based metal-organic framework(Zr-MOF) for hydrogen storage applications[J]. International Journal of Materials Research, 2014, 105(5): 516-519. |
17 | TADDEI M , DAU P V, COHEN S M , et al . Efficient microwave assisted synthesis of metal-organic framework UiO-66: optimization and scale up[J]. Dalton Transactions, 2015, 44(31): 14019-14026. |
18 | RUBIO-MARTINEZ M , BATTEN M P , POLYZOS A , et al . Versatile, high quality and scalable continuous flow production of metal-organic frameworks[J]. Scientific Reports, 2014, 4: 5443. |
19 | GOEKPINAR S , DIMENT T , JANIAK C . Environmentally benign dry-gel conversions of Zr-based UiO metal-organic frameworks with high yield and the possibility of solvent re-use[J]. Dalton Transactions, 2017, 46(30): 9895-9900. |
20 | TANNERT N , GOKPINAR S , HASTURK E , et al . Microwave-assisted dry-gel conversion—a new sustainable route for the rapid synthesis of metal-organic frameworks with solvent re-use[J]. Dalton Transactions, 2018, 47(29): 9850-9860. |
21 | LU N , ZHOU F , JIA H , et al . Dry-gel conversion synthesis of Zr-based metal-organic frameworks[J]. Industrial & Engineering Chemistry Research, 2017, 56(48): 14155-14163. |
22 | YE G , ZHANG D , LI XF , et al . Boosting catalytic performance of metal-organic framework by increasing the defects via a facile and green approach[J]. ACS Applied Materials & Interfaces, 2017, 9(40): 34937-34943. |
23 | MARSHALL R J , HOBDAY C L , MURPHIE C F , et al . Amino acids as highly efficient modulators for single crystals of zirconium and hafnium metal-organic frameworks[J]. Journal of Materials Chemistry A, 2016, 4(18): 6955-6963. |
24 | LIANG W , BABARAO R , D’ALESSANDRO D M . Microwave-assisted solvothermal synthesis and optical properties of tagged MIL-140A metal-organic frameworks[J]. Inorganic Chemistry, 2013, 52(22): 12878-12880. |
25 | LU C M , LIU J , XIAO K , et al . Microwave enhanced synthesis of MOF-5 and its CO2 capture ability at moderate temperatures across multiple capture and release cycles[J]. Chemical Engineering Journal, 2010, 156(2): 465-470. |
26 | TADDEI M , CASATI N , STEITZ D A , et al . In situ high-resolution powder X-ray diffraction study of UiO-66 under synthesis conditions in a continuous-flow microwave reactor[J]. CrystEngComm, 2017, 19(23): 3206-3214. |
27 | TAI S , ZHANG W , ZHANG J , et al . Facile preparation of UiO-66 nanoparticles with tunable sizes in a continuous flow microreactor and its application in drug delivery[J]. Microporous and Mesoporous Materials, 2016, 220: 148-154. |
28 | EBRAHIM A M , LEVASSEUR B , BANDOSZ T J . Interactions of NO2 with Zr-Based MOF: effects of the size of organic linkers on NO2 adsorption at ambient conditions[J]. Langmuir, 2013, 29(1): 168-174. |
29 | EBRAHIM A M , BANDOSZ T J . Ce(Ⅲ) doped Zr-based MOFs as excellent NO2 adsorbents at ambient conditions[J]. ACS Applied Materials & Interfaces, 2013, 5(21): 10565-10573. |
30 | DECOSTE J B , DEMASKY T J , KATZ M J , et al . A UiO-66 analogue with uncoordinated carboxylic acids for the broad-spectrum removal of toxic chemicals[J]. New Journal of Chemistry, 2015, 39(4): 2396-2399. |
31 | PETERSON G W , MAHLE J J , DECOSTE J B , et al . Extraordinary NO2 removal by the metal-organic framework UiO-66-NH2 [J]. Angewandte Chemie: International Edition, 2016, 55(21): 6235-6238. |
32 | JASUJA H , PETERSON G W , DECOSTE J B , et al . Evaluation of MOFs for air purification and air quality control applications: ammonia removal from air[J]. Chemical Engineering Science, 2015, 124: 118-124. |
33 | KIM K C , YU D , SNURR R Q . Computational screening of functional groups for ammonia capture in metal-organic frameworks[J]. Langmuir, 2013, 29(5): 1446-1456. |
34 | KIM K C , MOGHADAM P Z , FAIREN-JIMENEZ D , et al . Computational screening of metal catecholates for ammonia capture in metal-organic frameworks[J]. Industrial & Engineering Chemistry Research, 2015, 54(13): 3257-3267. |
35 | JOSHI J N , GARCIA-GUTIERREZ E Y , MORAN C M , et al . Engineering copper carboxylate functionalities on water stable metal-organic frameworks for enhancement of ammonia removal capacities[J]. Journal of Physical Chemistry C, 2017, 121(6): 3310-3319. |
36 | PETERSON G W , DECOSTE J B , FATOLLAHI-FARD F , et al . Engineering UiO-66-NH2 for toxic gas removal[J]. Industrial & Engineering Chemistry Research, 2014, 53(2): 701-707. |
37 | DECOSTE J B , BROWE M A , WAGNER G W , et al . Removal of chlorine gas by an amine functionalized metal-organic framework via electrophilic aromatic substitution[J]. Chemical Communications, 2015, 51(62): 12474-12477. |
38 | BROWE M A , NAPOLITANO A , DECOSTE J B , et al . Filtration of chlorine and hydrogen chloride gas by engineered UiO-66-NH2 metal-organic framework[J]. Journal of Hazardous Materials, 2017, 332: 162-167. |
39 | LU A X , PLOSKONKA A M , TOVAR T M , et al . Direct surface growth of UiO-66-NH2 on polyacrylonitrile nanofibers for efficient toxic chemical removal[J]. Industrial & Engineering Chemistry Research, 2017, 56(49): 14502-14506. |
40 | KATZ M J , MONDLOCH J E , TOTTEN R K , et al . Simple and compelling biomimetic metal-organic framework catalyst for the degradation of nerve agent simulants[J]. Angewandte Chemie:International Edition, 2014, 53(2): 497-501. |
41 | KATZ M J , MOON S Y , MONDLOCH J E , et al . Exploiting parameter space in MOFs: a 20-fold enhancement of phosphate-ester hydrolysis with UiO-66-NH2 [J]. Chemical Science, 2015, 6(4): 2286-2291. |
42 | DE KONING M C , GROL M VAN , BREIJAERT T . Degradation of paraoxon and the chemical warfare agents VX, tabun, and soman by the metal-organic frameworks UiO-66-NH2, MOF-808, NU-1000, and PCN-777[J]. Inorganic Chemistry, 2017, 56(19): 11804-11809. |
43 | LOPEZ-MAYA E , MONTORO C , MARLENY R-A L , et al . Textile/metal organic framework composites as self-detoxifying filters for chemical warfare agents[J]. Angewandte Chemie:International Edition, 2015, 54(23): 6790-6794. |
44 | GIL-SAN-MILLAN R , LOPEZ-MAYA E , HALL M , et al . Chemical warfare agents detoxification properties of zirconium metal-organic frameworks by synergistic incorporation of nucleophilic and basic sites[J]. ACS Applied Materials & Interfaces, 2017, 9(28): 23967-23973. |
45 | 周川, 杨小兵, 颜晓珊, 等 . 空气过滤用复合纳米纤维材料研究进展[J]. 功能材料, 2018, 49(5): 5056-5060. |
ZHOU C , YANG X B , YAN X S , et al . Progress on the composite nanofiber materials used for air filtration[J]. Journal of Functional Materials, 2018, 49(5): 5056-5060. | |
46 | MCCARTHY D L , LIU J , DWYER D B , et al . Electrospun metal-organic framework polymer composites for the catalytic degradation of methyl paraoxon[J]. New Journal of Chemistry, 2017, 41(17): 8748-8753. |
47 | LU A X , MCENTEE M , BROWE M A , et al . MOFabric: electrospun nanofiber mats from PVDF/UiO-66-NH2 for chemical protection and decontamination[J]. ACS Applied Materials & Interfaces, 2017, 9(15): 13632-13636. |
48 | PETERSON G W , LU A X , EPPS T H , et al . Tuning the morphology and activity of electrospun polystyrene/UiO-66-NH2 metal-organic framework composites to enhance chemical warfare agent removal[J]. ACS Applied Materials & Interfaces, 2017, 9(37): 32248-32254. |
49 | ZHAO J J , LOSEGO M D , LEMAIRE P C , et al . Highly adsorptive, MOF-functionalized nonwoven fiber mats for hazardous gas capture enabled by atomic layer deposition[J]. Advanced Materials Interfaces, 2014, 1(4): 1400040. |
50 | WAGNER G W , CHEN Q , WU Y . Reactions of VX, GD, and HD with nanotubular titania[J]. The Journal of Physical Chemistry C, 2008, 112(31): 11901-11906. |
51 | WAGNER G W , PETERSON G W , MAHLE J J . Effect of adsorbed water and surface hydroxyls on the hydrolysis of VX, GD, and HD on titania materials: the development of self-decontaminating paints[J]. Industrial & Engineering Chemistry Research, 2012, 51(9): 3598-3603. |
52 | ZHAO J , LEE D T, YAGA R W , et al . Ultra-fast degradation of chemical warfare agents using MOF-nanofiber kebabs[J]. Angewandte Chemie: International Edition, 2016, 55(42): 13224-13228. |
[1] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[2] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[3] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[4] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[5] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[6] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[7] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[8] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[9] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[10] | LI Ning, LI Jinke, DONG Jinshan. Research and development of porous medium burner in ethylene cracking furnace [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 73-83. |
[11] | GENG Yuanze, ZHOU Junhu, ZHANG Tianyou, ZHU Xiaoyu, YANG Weijuan. Homogeneous/heterogeneous coupled combustion of heptane in a partially packed bed burner [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4514-4521. |
[12] | XU Maoyu, TAO Shuai, QI Cong, LIANG Lin. Start-up and temperature fluctuation of loop heat pipe with flat disk evaporator [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4531-4537. |
[13] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[14] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[15] | LI Dongze, ZHANG Xiang, TIAN Jian, HU Pan, YAO Jie, ZHU Lin, BU Changsheng, WANG Xinye. Research progress of NO x reduction by carbonaceous substances for denitration in cement kiln [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4882-4893. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |