1 |
VENUGOPAL J , LOW S, CHOON A T , et al . Mineralization of osteoblasts with electrospun collagen/hydroxyapatite nanofibers[J]. Journal of Materials Science: Materials in Medicine, 2008, 19(5): 2039-2046.
|
2 |
YANG Y G , SYKES M . Xenotransplantation: current status and a perspective on the future[J]. Nature Reviews Immunology, 2007, 7(7): 519-550.
|
3 |
YUNOS D M , BRETCANU O , BOCCACCINI A R . Polymer-bioceramic composites for tissue engineering scaffolds[J]. Journal of Materials Science, 2008, 43(13):4433-4442.
|
4 |
PRABHAKARAN M P , VENUGOPAL J , GHASEMI-MOBARAKEH L , et al . Stem cells and nanostructures for advanced tissue regeneration[M]// Biomedical Applications of Polymeric Nanofibers. Berlin, Heidelberg: Springer, 2011:21-62.
|
5 |
HUTMACHER D W . The biomaterials: silver jubilee compendium || scaffolds in tissue engineering bone and cartilage[M]. Netherlands: Elsevier Science,2006:175-189.
|
6 |
FU Q , SAIZ E , TOMSIA A P . Bioinspired strong and highly porous glass scaffolds[J]. Advanced Functional Materials, 2011, 21(6): 1058-1063.
|
7 |
MAJI K , DASGUPTA S . Bioactive glass and biopolymer based composite scaffold for bone regeneration[J]. Transactions of the Indian Ceramic Society, 2015, 74(4):195-201.
|
8 |
曹文灵 . 骨修复复合材料的研制及动物实验研究[D]. 重庆: 重庆大学, 2001.
|
|
CAO W L . Development of bone repair composites and animal experimental research [D]. Chongqing: Chongqing University, 2001.
|
9 |
BOEDTKER H , DOTY P . A study of gelatin molecules, aggregates and gels[J]. The Journal of Physical Chemistry, 1954, 58(11): 968-983.
|
10 |
MIESZAWSKA A J , FOURLIGAS N , GEORGAKOUDI I , et al . Osteoinductive silk-silica composite biomaterials for bone regeneration[J]. Biomaterials, 2010, 31(34):8902-8910.
|
11 |
SEOL Y J , LEE J Y, PARK Y J , et al . Chitosan sponges as tissue engineering scaffolds for bone formation[J]. Biotechnology Letters, 2004, 26(13): 1037-1041.
|
12 |
SENEL S , MCCLURE S J . Potential applications of chitosan in veterinary medicine[J]. Advanced Drug Delivery Reviews, 2004, 56(10): 1467-1480.
|
13 |
ARANAZ I , MENGÍBAR M , HARRIS R , et al . Functional characterization of chitin and chitosan[J]. Current Chemical Biology, 2009, 3(2): 203-230.
|
14 |
DI MARTINO A , SITTINGER M , RISBUD M V . Chitosan: a versatile biopolymer for orthopaedic tissue-engineering[J]. Biomaterials, 2005, 26(30): 5983-5990.
|
15 |
MANO J F , SILVA G A , AZEVEDO H S , et al . Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends[J]. Journal of the Royal Society Interface, 2007, 4(17): 999-1030.
|
16 |
ELBATAL H A , AZOOZ M A , KHALIL E M A , et al . Characterization of some bioglass-ceramics[J]. Materials Chemistry and Physics, 2003, 80(3): 599-609.
|
17 |
HAN P , WU C , XIAO Y . The effect of silicate ions on proliferation, osteogenic differentiation and cell signalling pathways (WNT and SHH) of bone marrow stromal cells[J]. Biomaterials Science, 2013, 1(4): 379-392.
|
18 |
WANG Y , YANG C , CHEN X , et al . Development and characterization of novel biomimetic composite scaffolds based on bioglass‐collagen‐hyaluronic acid‐phosphatidylserine for tissue engineering applications[J]. Macromolecular Materials & Engineering, 2006, 291(3):254-262.
|
19 |
KEARNEY J N . Clinical evaluation of skin substitutes[J]. Burns, 2001, 27(5): 545-551.
|
20 |
LANGER R . Biomaterials in drug delivery and tissue engineering: one laboratory's experience[J]. Accounts of Chemical Research, 2000, 33(2): 94-101.
|
21 |
IKEDA N , KAWANABE K , NAKAMURA T . Quantitative comparison of osteoconduction of porous, dense A-W glass-ceramic and hydroxyapatite granules (effects of granule and pore sizes)[J]. Biomaterials, 1999, 20(12): 1087-1095.
|
22 |
CHANG B S , HONG K S , YOUN H J , et al . Osteoconduction at porous hydroxyapatite with various pore configurations[J]. Biomaterials, 2000, 21(12): 1291-1298.
|
23 |
FERLIN K M , PRENDERGAST M E , MILLER M L , et al . Influence of 3D printed porous architecture on mesenchymal stem cell enrichment and differentiation[J]. Acta Biomaterialia, 2016, 32:161-169.
|
24 |
PEI X , MA L , ZHANG B , et al . Creating hierarchical porosity hydroxyapatite scaffold with osteoinduction by three-dimensional printing and microwave sintering[J]. Biofabrication, 2017, 9(4):045008.
|
25 |
FU Q , SAIZ E . Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives[J]. Materials Science & Engineering C, 2011, 31(7):1245-1256.
|
26 |
李正茂 . 生物活性玻璃组织工程支架的制备及细胞相容性研究[D]. 广州:华南理工大学, 2013.
|
|
LI Zhengmao . Preparation and cellular compatibility of bioactive glass tissue engineering scaffolds [D]. Guangzhou: South China University of Technology, 2013.
|
27 |
MAO D Y , LI Q , LI D K , et al . 3D porous poly(ε-caprolactone)/58S bioactive glass-sodium alginate/gelatin hybrid scaffolds prepared by a modified melt molding method for bone tissue engineering[J]. Materials & Design, 2018, 160:1-8.
|
28 |
PETER M , BINULAL N S , NAIR S V , et al . Novel biodegradable chitosan-gelatin/nano-bioactive glass ceramic composite scaffolds for alveolar bone tissue engineering[J]. Chemical Engineering Journal, 2010, 158(2):353-361.
|
29 |
WU C , ZHANG Y , ZHOU Y , et al . A comparative study of mesoporous glass/silk and non-mesoporous glass/silk scaffolds: physiochemistry and in vivo osteogenesis[J]. Acta Biomaterialia, 2011, 7(5):2229-2236.
|
30 |
DAVIES J E . Mechanisms of endosseous integration[J]. International Journal of Prosthodontics, 1998, 11(5):391-401.
|
31 |
BELLUCCI D , SOLA A , ANESI A , et al . Bioactive glass/hydroxyapatite composites: mechanical properties and biological evaluation[J]. Materials Science & Engineering C, 2015, 51:196-205.
|
32 |
CUI N , QIAN J , WANG J , et al . Physicochemical properties and biocompatibility of PZL/PLGA/bioglass composite scaffolds for bone tissue engineering[J]. RSC Advances, 2016, 6(99): 97096-97106.
|
33 |
HENCH L L . The story of bioglass®[J]. Journal of Materials Science: Materials in Medicine, 2006, 17(11): 967-978.
|
34 |
范群英, 詹红兵 . 有机-无机杂化骨修复材料[J]. 化学进展, 2012, 24(1):54-60.
|
|
FAN Q Y , ZHAN H B . Organic-inorganic hybrid bone repair materials [J]. Progress in Chemical, 2012, 24(1):54-60.
|
35 |
陈子达 . 溶胶-凝胶法在制备生物材料方面的应用[J]. 生物医学工程学杂志, 2001, 18(4): 629-632.
|
|
CHEN Z D . Application of sol-gel method in preparation of biomaterials [J]. Journal of Biomedical Engineering, 2001, 18(4): 629-632.
|
36 |
FABBRI P , CANNILLO V , SOLA A , et al . Highly porous polycaprolactone-45S5 bioglass scaffolds for bone tissue engineering[J]. Composites Science & Technology, 2010, 70(13):1869-1878.
|
37 |
MOZAFARI M , MOZTARZADEH F , RABIEE M , et al . Development of macroporous nanocomposite scaffolds of gelatin/bioactive glass prepared through layer solvent casting combined with lamination technique for bone tissue engineering[J]. Ceramics International, 2010, 36(8):2431-2439.
|
38 |
林晓艳, 范红松, 张兴栋 . 戊二醛交联纳米羟基磷灰石/胶原复合材料作用机理研究[J]. 四川大学学报(自然科学版), 2005, 42(1):93-97.
|
|
LIN Xiaoyan , FAN Hongsong , ZHANG Xingdong . Study on the action mechanism of glutaraldehyde crosslinked nano-hydroxyapatite/collagen composite [J]. Journal of Sichuan University (Natural Science Edition), 2005, 42(1):93-97.
|
39 |
KEOTHONGKHAM K , CHAROENPHANDHU N , THONGBUNCHOO J , et al . Evaluation of bioactive glass incorporated poly(caprolactone)-poly(vinyl alcohol) matrix and the effect of BMP-2 modification[J]. Materials Science & Engineering C: Materials for Biological Applications, 2017, 74:47-54.
|
40 |
GAO C , GAO Q , LI Y , et al . In vitro evaluation of electrospun gelatin-bioactive glass hybrid scaffolds for bone regeneration[J]. Journal of Applied Polymer Science, 2013, 127(4): 2588-2599.
|