1 |
LIU H , YANG D , GAO R , et al . A novel Na2WO4-Mn/SiC monolithic foam catalyst with improved thermal properties for the oxidative coupling of methane[J]. Catalysis Communications, 2008, 9(6): 1302-1306.
|
2 |
CHAI R , LI Y , ZHANG Q , et al . Free-standing NiO-MgO nanosheets in-situ controllably composited on Ni-foam as monolithic catalyst for catalytic oxy-methane reforming[J]. Materials Letters, 2016, 171: 248-251.
|
3 |
CHEN S , WEI Z , QI X Q , et al . Nanostructured polyaniline-decorated Pt/C@PANI core-shell catalyst with enhanced durability and activity[J]. Journal of the American Chemical Society, 2012, 134(32): 13252-13255.
|
4 |
AKBAR S , ELLIOTT J M , RITTMAN M , et al . Facile production of ordered 3D platinum nanowire networks with "single diamond" bicontinuous cubic morphology[J]. Advanced Materials, 2013, 25(8): 1160-1164.
|
5 |
NIE Y , LI L , WEI Z . Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction[J]. Chemical Society Reviews, 2015, 44(8): 2168-2201.
|
6 |
ZHANG N , GAN S , WU T , et al . Growth control of MoS2 nanosheets on carbon cloth for maximum active edges exposed: an excellent hydrogen evolution 3D cathode[J]. ACS Applied Materials & Interfaces, 2015, 7(22): 12193-12202.
|
7 |
XU Y F , CHEN Y , XU G L , et al . RuO2 nanoparticles supported on MnO2 nanorods as high efficient bifunctional electrocatalyst of lithium-oxygen battery[J]. Nano Energy, 2016, 28: 63-70.
|
8 |
JING G J , ZHANG X J , ZHANG A A , et al . CeO2-CuO/Cu2O/Cu monolithic catalysts with three-kind morphologies Cu2O layers for preferential CO oxidation[J]. Applied Surface Science, 2018, 434: 445-451.
|
9 |
LI W , YE H Q , LIU G G , et al . The role of graphene coating on cordierite-supported Pd monolithic catalysts for low-temperature combustion of toluene[J]. Chinese Journal of Catalysis, 2018, 39(5): 946-954.
|
10 |
LI Y S , XU H D , FENG X , et al . The effective promotion of trace amount of Cu on Ce/WO3-ZrO2-TiO2 monolithic catalyst for the low-temperature NH3-SCR of NO x [J]. Canadian Journal of Chemical Engineering, 2018, 96(5): 1168-1175.
|
11 |
PORCAR R , NUEVO D , GARCIA-VERDUGO E , et al . New porous monolithic membranes based on supported ionic liquid-like phases for oil/water separation and homogenous catalyst immobilisation[J]. Chemical Communications, 2018, 54(19): 2385-2388.
|
12 |
RASMUSSEN S B , PORTELA R , BAZIN P , et al . Transient operando study on the NH3/NH4 + interplay in V-SCR monolithic catalysts[J]. Applied Catalysis B: Environmental, 2018, 224: 109-115.
|
13 |
ZHANG K , YU F , ZHU M Y , et al . Enhanced low temperature NO reduction performance via MnO x -Fe2O3/vermiculite monolithic honeycomb catalysts[J]. Catalysts, 2018, 8(3): 100.
|
14 |
ZHOU H , GE M Y , WU S G , et al . Iron based monolithic catalysts supported on Al2O3, SiO2, and TiO2: a comparison for NO reduction with propane[J]. Fuel, 2018, 220: 330-338.
|
15 |
ZHOU M M , SHI Y F , MA K , et al . Nanoarray Cu/SiO2 catalysts embedded in monolithic channels for the stable and efficient hydrogenation of CO2-derived ethylene carbonate[J]. Industrial & Engineering Chemistry Research, 2018, 57(6): 1924-1934.
|
16 |
GONG M , DAI H . A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts[J]. Nano Research, 2014, 8(1): 23-39.
|
17 |
FENG J X , DING L X , YE S H , et al . Co(OH)2@PANI hybrid nanosheets with 3D networks as high-performance electrocatalysts for hydrogen evolution reaction[J]. Advanced Materials, 2015, 27(44): 7051-7057.
|
18 |
BADALYAN A , STAHL S S . Cooperative electrocatalytic alcohol oxidation with electron-proton-transfer mediators[J]. Nature, 2016, 535(7612): 406-410.
|
19 |
VALKOVA T , KRASTEV I , Influence of glycine on the electrochemical deposition of Sn-Co alloy from gluconate electrolyte [J]. Bulgarian Chemical Communications, 2016, 48: 78-84.
|
20 |
ZHANG X X , ZHANG H H , QIAN M F , et al . Enhanced magnetocaloric effect in Ni-Mn-Sn-Co alloys with two successive magnetostructural transformations[J]. Scientific Reports, 2018, 8: 8235.
|
21 |
LIU H , MA X , RAO Y , et al . Heteromorphic NiCo2S4/Ni3S2/Ni foam as a self-standing electrode for hydrogen evolution reaction in alkaline solution[J]. ACS Applied Materials & Interfaces, 2018, 10(13): 10890-10897.
|
22 |
YUAN G , NIU X P , CHEN Z C , et al . Self-supported hierarchical shell@core Ni3S2@Ni foam composite electrocatalyst with high efficiency and long-term stability for methanol oxidation[J]. ChemElectroChem, 2018, 5(17): 2376-2382.
|
23 |
CAO M , XUE Z , NIU J J , et al . Facile electrodeposition of Ni-Cu-P dendrite nanotube films with enhanced hydrogen evolution reaction activity and durability[J]. ACS Applied Materials & Interfaces, 2018, 10(41): 35224-35233.
|
24 |
CAO X , HONG Y , ZHANG N , et al . Phase exploration and identification of multinary transition-metal selenides as high-efficiency oxygen evolution electrocatalysts through combinatorial electrodeposition[J]. ACS Catalysis, 2018, 8(9): 8273-8289.
|
25 |
XIAO B , ZHAO K F , ZHANG L , et al . A green and facile synthesis of Co3O4 monolithic catalyst with enhanced total oxidation of propane performance[J]. Catalysis Communications, 2018, 116: 1-4.
|
26 |
廖永进, 张亚平, 朱一闻, 等 . WO3掺杂对V2O5/TiO2-SnO2催化剂NH3选择性催化还原NO x 的影响[J]. 化工进展, 2017,36(3): 951-956.
|
|
LIAO Y J , ZHANG Y P , ZHU Y W , et al . Influence of WO3 doping on properties of V2O5/TiO2-SnO2 catalysts for selective catalytic reduction of NO x by NH3 [J]. Chemical Industry and Engineering Progress, 2017,36(3): 951-956.
|
27 |
任瑞鹏, 陈虎, 陈健, 等 . 应用催化氧化催化剂脱除烟气中NO的研究进展[J]. 化工进展, 2014, 33(6): 1453-1458.
|
|
REN R P , CHEN H , CHEN J , et al . Study on catalytic oxidations catalysts in removal of NO from flue gas[J]. Chemical Industry and Engineering Progress, 2014, 33(6): 1453-1458.
|
28 |
SHU Z , HUANG W M , HUA Z L , et al . Template-free synthesis of mesoporous X-Mn (X = Co, Ni, Zn) bimetal oxides and catalytic application in the room temperature removal of low-concentration NO[J]. Journal of Materials Chemistry A, 2013, 1(35): 10218-10227.
|
29 |
SHUANG L , ZHANG M , HUANG Y , et al . A novel chromic oxide catalyst for NO oxidation at ambient temperature[J]. RSC Advances, 2014, 4(55): 29180-29186.
|
30 |
SHU Z , CHEN Y , HUANG W , et al . Room-temperature catalytic removal of low-concentration NO over mesoporous Fe-Mn binary oxide synthesized using a template-free approach[J]. Applied Catalysis B: Environmental, 2013, 140/141(8): 42-50.
|
31 |
GUO Z , LIANG Q H , YANG Z , et al . Modifying porous carbon nanofibers with MnO x -CeO2-Al2O3 mixed oxides for NO catalytic oxidation at room temperature[J]. Catalysis Science & Technology, 2016, 6(2): 422-425.
|
32 |
GUO Z , HUANG Z H , WANG M , et al . Graphene/carbon composite nanofibers for NO oxidation at room temperature[J]. Catalysis Science & Technology, 2015, 5(2): 827-829.
|
33 |
IWAMOTO M , YODA Y , YAMAZOE N , et al . Study of metal oxide catalysts by temperature programmed desorption 4. oxygen adsorption on various metal oxides[J]. The Journal of Physical Chemistry, 82(24): 2564-2570.
|