Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (10): 4511-4519.DOI: 10.16085/j.issn.1000-6613.2019-0087
• Energy processes and technology • Previous Articles Next Articles
Tingwei LAN1,2(),Ting GAO1,2,Luyao QIANG1,2,Wuliang SUN1,2,Tao WANG1,2,Zhuangzhuang ZHANG1,2,Hui CHANG1,2,Xiaoxun MA1,2()
Received:
2019-01-14
Online:
2019-10-05
Published:
2019-10-05
Contact:
Xiaoxun MA
兰婷玮1,2(),高婷1,2,强路遥1,2,孙午亮1,2,王涛1,2,张壮壮1,2,常慧1,2,马晓迅1,2()
通讯作者:
马晓迅
作者简介:
兰婷玮(1995—),女,硕士研究生,研究方向为煤催化热解。E-mail:基金资助:
CLC Number:
Tingwei LAN,Ting GAO,Luyao QIANG,Wuliang SUN,Tao WANG,Zhuangzhuang ZHANG,Hui CHANG,Xiaoxun MA. Effect of Ni-ZSM-5 zeolites on product distribution of Shendong coal pyrolysis[J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4511-4519.
兰婷玮,高婷,强路遥,孙午亮,王涛,张壮壮,常慧,马晓迅. Ni-ZSM-5分子筛对神东煤热解产物分布的影响[J]. 化工进展, 2019, 38(10): 4511-4519.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2019-0087
气体 | 进料速率 /g·min-1 | 质量/g | 气体流量/L·min-1 | 温度控制/℃ | ||||
---|---|---|---|---|---|---|---|---|
煤样 | 催化剂 | 进料气 | 流化气 | 反应器 | 旋风分离器 | 冷凝管 | ||
N2 | 0.2 | 5.0 | 11.0 | 1.2 | 0.6 | 600 | 350 | -40±2 |
气体 | 进料速率 /g·min-1 | 质量/g | 气体流量/L·min-1 | 温度控制/℃ | ||||
---|---|---|---|---|---|---|---|---|
煤样 | 催化剂 | 进料气 | 流化气 | 反应器 | 旋风分离器 | 冷凝管 | ||
N2 | 0.2 | 5.0 | 11.0 | 1.2 | 0.6 | 600 | 350 | -40±2 |
催化剂 | Ni | ||
---|---|---|---|
X1/mg?g-1 | X2/mg?g-1 | X2?X1-1/% | |
5% Ni浸渍Z5 | 37.4 | 34.85 | 93.2 |
5% Ni原位合成Z5 | 37.4 | 34.72 | 92.8 |
催化剂 | Ni | ||
---|---|---|---|
X1/mg?g-1 | X2/mg?g-1 | X2?X1-1/% | |
5% Ni浸渍Z5 | 37.4 | 34.85 | 93.2 |
5% Ni原位合成Z5 | 37.4 | 34.72 | 92.8 |
样品 | 对称伸缩振动 /cm-1 | 反对称伸缩振动峰 /cm-1 |
---|---|---|
全硅ZSM-5原粉 | 803.8 | 1103.2 |
5% Ni浸渍Z5 | 803.7 | 1103.2 |
5% Ni原位合成Z5 | 801.2 | 1101.4 |
样品 | 对称伸缩振动 /cm-1 | 反对称伸缩振动峰 /cm-1 |
---|---|---|
全硅ZSM-5原粉 | 803.8 | 1103.2 |
5% Ni浸渍Z5 | 803.7 | 1103.2 |
5% Ni原位合成Z5 | 801.2 | 1101.4 |
样品 | a/nm | b/nm | c/nm | 晶胞体积/nm3 | 相对结晶度/% |
---|---|---|---|---|---|
全硅ZSM-5原粉 | 2.0012 | 2.0172 | 1.3368 | 5.3964 | 100.00 |
5% Ni浸渍Z5 | 2.0011 | 2.0167 | 1.3369 | 5.3952 | 99.10 |
5% Ni原位合成Z5 | 2.0046 | 2.0185 | 1.3372 | 5.4107 | 94.15 |
样品 | a/nm | b/nm | c/nm | 晶胞体积/nm3 | 相对结晶度/% |
---|---|---|---|---|---|
全硅ZSM-5原粉 | 2.0012 | 2.0172 | 1.3368 | 5.3964 | 100.00 |
5% Ni浸渍Z5 | 2.0011 | 2.0167 | 1.3369 | 5.3952 | 99.10 |
5% Ni原位合成Z5 | 2.0046 | 2.0185 | 1.3372 | 5.4107 | 94.15 |
样品 | 比表面积/m2·g-1 | 孔容/cm3·g-1 | |||||
---|---|---|---|---|---|---|---|
总孔 | 微孔 | 介孔 | 总孔 | 微孔 | 介孔 | ||
全硅ZSM-5原粉 | 408.2 | 396.3 | 11.9 | 0.21 | 0.19 | 0.02 | |
5% Ni浸渍Z5 | 403.1 | 383.6 | 19.5 | 0.21 | 0.18 | 0.03 | |
5% Ni原位合成Z5 | 408.6 | 385.2 | 23.4 | 0.23 | 0.18 | 0.05 |
样品 | 比表面积/m2·g-1 | 孔容/cm3·g-1 | |||||
---|---|---|---|---|---|---|---|
总孔 | 微孔 | 介孔 | 总孔 | 微孔 | 介孔 | ||
全硅ZSM-5原粉 | 408.2 | 396.3 | 11.9 | 0.21 | 0.19 | 0.02 | |
5% Ni浸渍Z5 | 403.1 | 383.6 | 19.5 | 0.21 | 0.18 | 0.03 | |
5% Ni原位合成Z5 | 408.6 | 385.2 | 23.4 | 0.23 | 0.18 | 0.05 |
样品 | 弱酸量 /mmol·g-1 | 强酸量 /mmol·g-1 | 总酸量 /mmol·g-1 |
---|---|---|---|
全硅ZSM-5原粉 | 0.028 | — | 0.028 |
5% Ni浸渍Z5 | 0.046 | 0.018 | 0.064 |
5% Ni原位合成Z5 | 0.121 | 0.085 | 0.206 |
样品 | 弱酸量 /mmol·g-1 | 强酸量 /mmol·g-1 | 总酸量 /mmol·g-1 |
---|---|---|---|
全硅ZSM-5原粉 | 0.028 | — | 0.028 |
5% Ni浸渍Z5 | 0.046 | 0.018 | 0.064 |
5% Ni原位合成Z5 | 0.121 | 0.085 | 0.206 |
床料 | 半焦/% | 液体/% | 气体/% | 积炭/% |
---|---|---|---|---|
SiO2 | 68.60 | 11.03 | 20.37 | — |
全硅ZSM-5原粉 | 68.82 | 9.57 | 20.40 | 1.21 |
5% Ni浸渍Z5 | 68.40 | 7.87 | 22.12 | 1.61 |
5% Ni原位合成Z5 | 68.43 | 9.47 | 20.93 | 1.17 |
床料 | 半焦/% | 液体/% | 气体/% | 积炭/% |
---|---|---|---|---|
SiO2 | 68.60 | 11.03 | 20.37 | — |
全硅ZSM-5原粉 | 68.82 | 9.57 | 20.40 | 1.21 |
5% Ni浸渍Z5 | 68.40 | 7.87 | 22.12 | 1.61 |
5% Ni原位合成Z5 | 68.43 | 9.47 | 20.93 | 1.17 |
床料 | 各组分含量/mmol·g-1 | |||||
---|---|---|---|---|---|---|
H2 | CO | CH4 | CO2 | C2,C3 | 总和 | |
SiO2 | 0.48 | 1.26 | 1.14 | 0.55 | 0.39 | 3.82 |
全硅ZSM-5原粉 | 0.24 | 1.16 | 1.18 | 0.79 | 0.43 | 3.8 |
5% Ni浸渍 Z5 | 4.57 | 1.72 | 0.85 | 0.85 | 0.22 | 8.21 |
5% Ni原位合成Z5 | 1.14 | 1.34 | 1.24 | 0.83 | 0.46 | 5.01 |
床料 | 各组分含量/mmol·g-1 | |||||
---|---|---|---|---|---|---|
H2 | CO | CH4 | CO2 | C2,C3 | 总和 | |
SiO2 | 0.48 | 1.26 | 1.14 | 0.55 | 0.39 | 3.82 |
全硅ZSM-5原粉 | 0.24 | 1.16 | 1.18 | 0.79 | 0.43 | 3.8 |
5% Ni浸渍 Z5 | 4.57 | 1.72 | 0.85 | 0.85 | 0.22 | 8.21 |
5% Ni原位合成Z5 | 1.14 | 1.34 | 1.24 | 0.83 | 0.46 | 5.01 |
1 | 英国石油公司. BP世界能源统计年鉴2018版[EB/OL]. [2019-01-14]. . |
AmocoBP. BP statistical review of world energy 2018[EB/OL]. [2019-01-14]. . | |
2 | 闫伦靖, 孔晓俊, 白永辉, 等. Mo和Ni改性的HZSM-5催化剂对煤热解焦油的改质[J]. 燃料化学学报, 2016, 44(1): 30-36. |
YANLunjing, KONGXiaojun, BAIYonghui, et al. Catalytic upgrading of gaseous tar from coal pyrolysis over Mo and Ni-modified HZSM-5[J]. Journal of Fuel Chemistry and Technology, 2016, 44(1): 30-36. | |
3 | 梁晓彤, 谢良才, 徐龙, 等. 改性ZSM-5对神东煤热解行为的影响[J]. 煤炭转化, 2017, 40(3): 21-27. |
LIANGXiaotong, XIELiangcai, XULong, et al. Pyrolysis characteristics of Shendong coal on modified ZSM-5 catalyst[J]. Coal Conversion, 2017, 40(3): 21-27. | |
4 | 刘维桥, 雷卫宁, 尚通明, 等. Ga改性的HZSM-5分子筛甲醇芳构化催化反应性能[J]. 化工进展, 2011, 30(12): 2637-2641. |
LIUWeiqiao, LEIWeining, SHANGTongming, et al. Property of HZSM-5 catalysts promoted by Ga in methanol aromatization[J]. Chemical Industry and Engineering Progress, 2011, 30(12): 2637-2641. | |
5 | 刘维桥, 雷卫宁, 尚通明, 等. Zn对HZSM-5分子筛催化剂物化及甲醇芳构化反应性能的影响[J]. 化工进展, 2011, 30(9): 1967-1971. |
LIUWeiqiao, LEIWeining, SHANGTongming, et al. Physicochemical and methanol aromatization property of HZSM-5 catalyst promoted by Zn[J]. Chemical Industry and Engineering Progress, 2011, 30(9): 1967-1971. | |
6 | AMINM N, LIY, RAZZAQR, et al. Pyrolysis of low rank coal by nickel based zeolite catalysts in the two-staged bed reactor[J]. Journal of Analytical and Applied Pyrolysis, 2016, 118(MAR): 54-62. |
7 | LIUT L, CAOJ P, ZHAOX Y, et al. In situ, upgrading of Shengli lignite pyrolysis vapors over metal-loaded HZSM-5 catalyst[J]. Fuel Processing Technology, 2017, 160: 19-26. |
8 | 孙长勇, 宋一兵, 叶飞, 等. Fe-ZSM-5杂原子分子筛的合成与表征[J]. 光谱实验室, 2003, 20(3): 448-451. |
SUNChangyong, SONGYibing, YEFei, et al. Synthesis and characterization of heteroatom-containing zeolite Fe-ZSM-5[J]. Chinese Journal of Spectroscopy Laboratory, 2003, 20(3): 448-451. | |
9 | 刘烨. ZSM-5分子筛催化剂的原位合成、改性及MTP反应性能研究[D]. 杭州: 浙江大学, 2010. |
LIUYe. In-situ synthesis and modification of ZSM-5 zolite and its catalytic activity on methanol to propylene process[D]. Hangzhou: Zhejiang University, 2010. | |
10 | SZOSTAKR, THOMAST L. Reassessment of zeolite and molecular sieve framework infrared vibrations[J]. Journal of Catalysis, 1986, 101(2): 549-552. |
11 | 佟惠娟, 李工. 含铁和钒的ZSM-5型分子筛的合成、表征及催化性能[J]. 石油化工高等学校学报, 2002, 15(2): 33-36. |
TONGHuijuan, LIGong. Synthesis and characterization of ZSM-5 containing framework iron and vanadium and its catalytic performance[J]. Journal of Petrochemical Universities, 2002, 15(2): 33-36. | |
12 | 任永利, 刘国柱, 米镇涛. 杂原子进入分子筛骨架结构的波谱学判据[J]. 化学通报, 2004(6): 433-438. |
RENYongli, LIUGuozhu, MIZhentao. An introduction on spectroscopy identification of framework heteroatom in molecular sieves[J]. Chemistry, 2004(6): 443-438. | |
13 | 韩静. 多级孔金属(Ga\Cr)/ZSM-5分子筛纤维的制备及其催化转化正丁烷的研究[D]. 北京: 中国石油大学, 2016. |
HANJing. The fabrication of (Ga, Cr)/ZSM-5 hollow fibers for efficient catalytic conversion of n-butane[D]. Beijing: China University of Petroleum, 2016. | |
14 | 王高亮. 改性纳米ZSM-5分子筛的制备及其芳构化性能研究[D]. 哈尔滨: 黑龙江大学, 2014. |
WANGGaoliang. Preparation and aromatization properties of modified nano-ZSM-5 zeolite [D]. Harbin: Heilongjiang University, 2014. | |
15 | MÉRIDA-ROBLESJ, RODRÍGUEZ-CASTELLÓNE, JIMÉNEZ-LÓPEZA. Characterization of Ni, Mo and Ni-Mo catalysts supported on alumina-pillared α-zirconium phosphate and reactivity for the thiophene HDS reaction[J]. Journal of Molecular Catalysis A: Chemical, 1999, 145(1): 169-181. |
16 | PARKY C, OH E S, RHEEH K. Characterization and catalytic activity of WNiMo/Al2O3 catalyst for hydrodenitrogenation of pyridine[J]. Industrial& Engineering Chemistry Research, 1997, 36(12): 5083-5089. |
17 | LUCASA D, VALVERDEJ L, DORADOF, et al. Influence of the ion exchanged metal (Cu, Co, Ni and Mn) on the selective catalytic reduction of NOxover mordenite and ZSM-5[J]. Journal of Molecular Catalysis A: Chemical, 2005, 225(1): 47-58. |
18 | 宋烨, 林伟, 田辉平, 等. 不同改性ZSM-5分子筛负载Ni催化剂上1-庚烯芳构化和异构化性能研究[J]. 石油炼制与化工, 2016, 47(8): 1-6. |
SONGYe, LINWei, TIANHuiping, et al. Study of aromatization and isomerization of 1-heptene over different modified ZSM-5 zeolite-supported Ni catalysts[J]. Petroleum Processing and Petrochemicals, 2016, 47(8): 1-6. | |
19 | TOPSΦEN Y, PEDERSENK, DEROUANEE G. Infrared and temperature-programmed desorption study of the acidic properties of ZSM-5-type zeolites[J]. Journal of Catalysis, 1981, 70(1): 41-52. |
20 | 贺振富, 代振宇, 龙军. 硅-铝催化剂酸中心形成及其结构[J]. 石油学报(石油加工), 2011, 27(1): 11-19. |
HEZhenfu, DAIZhenyu, LONGJun. Formation and structural characteristics of acidic centers of silica-alumina catalyst[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2011, 27(1): 11-19. | |
21 | 许莹, 孙小星, 胡宾生. 催化剂对混合煤在快速热解过程中的影响[J]. 化学工程, 2007, 35(4): 65-67. |
XUYing, SUNXiaoxing, HUBinsheng. Effect of combustion catalysts on mixed-coal rapid pyrolysis[J]. Chemical Engineering(China), 2007, 35(4): 65-67. | |
22 | 詹必增, 胡锷, 曾昭槐. ZSM-5分子筛催化剂酸性对积炭的影响[J]. 燃料化学学报, 1992, 20(8): 232-236. |
ZHANBizeng, HUE, ZENGZhaohuai. The effect of ZSM-5 zeolite acidity on coke deposition[J]. Journal of Fuel Chemistry and Technology, 1992, 20(8): 232-236. | |
23 | DAS T K. Evolution characteristics of gases during pyrolysis of maceral concentrates of Russian coking coals[J]. Fuel, 2001, 80(4): 489-500. |
24 | PORADAS. The reactions of formation of selected gas products during coal pyrolysis[J]. Fuel, 2004, 83(9): 1191-1196. |
25 | 张蕾. 煤热解制氢负载型催化剂的制备及其表征[D]. 北京: 中国矿业大学, 2009. |
ZHANGLei. Preparation and characterization of supported catalyst on hydrogen production from coal pyrolysis[D]. Beijing: China University of Mining and Technology, 2009. | |
26 | LEE H, KIMY M, JUNGK B, et al. Catalytic hydrodeoxygenation of geodae-uksae pyrolysis oil over Ni/desilicated HZSM-5[J]. Journal of Cleaner Production, 2017, 173: 763-770. |
27 | BOTASJ A, SERRANOD P, GARCIAA, et al. Catalytic conversion of rapeseed oil into raw chemicals and fuels over Ni- and Mo-modified nanocrystalline ZSM-5 zeolite[J]. Catalysis Today, 2012, 195(1): 59-70. |
28 | 张妮娜. 改性ZSM-5分子筛对神东煤热解产物分布的影响[D]. 西安: 西北大学, 2018. |
ZHANGNina. Effect of modified HZSM-5 zeolites on product distribution of Shendong coal pyrolysis[D]. Xi’an: Northwest University, 2018. | |
29 | 杨景标, 蔡宁生. 应用TG-FTIR联用研究催化剂对煤热解的影响[J]. 燃料化学学报, 2006, 34(6): 650-654. |
YANGJingbiao, CAINingsheng. A TG-FTIR study on catalytic pyrolysis of coal[J]. Journal of Fuel Chemistry and Technology, 2006, 34(6): 650-654. | |
30 | 詹正坤. 用改性ZSM-5沸石分离C8芳烃混合物[J]. 石油化工, 1990, 19(7): 433-437. |
ZHANZhengkun. Separation of C8 aromatic mixtures with modified zeolites[J]. Petrochemical Technology, 1990, 19(7): 433-437. | |
31 | 左欠. ZSM-5分子筛亲疏水性调控及其吸附苯酚和催化性能研究[D]. 石家庄: 河北科技大学, 2015. |
ZUOQian. Preparation and adsorption and catalytic properties of hydrophobic ZSM-5 zeolites[D]. Shijiazhuang: Hebei University of Science and Technology, 2015. | |
32 | 胡沔. 半焦载Fe-Ni催化剂的制备及其对生物质催化热解的机理研究[D]. 武汉: 华中科技大学, 2015. |
HUMian. Preparation and mechanism for char supported Fe-Ni catalysts on biomass catalytic pyrolysis[D]. Wuhan: Huazhong University of Science and Technology, 2015. |
[1] | HE Meijin. Application and development trend of molecular management in separation technology in petrochemical field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 260-266. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[4] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[5] | WANG Jiaqing, SONG Guangwei, LI Qiang, GUO Shuaicheng, DAI Qingli. Rubber-concrete interface modification method and performance enhancement path [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 328-343. |
[6] | DAI Huantao, CAO Lingyu, YOU Xinxiu, XU Haoliang, WANG Tao, XIANG Wei, ZHANG Xueyang. Adsorption properties of CO2 on pomelo peel biochar impregnated by lignin [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 356-363. |
[7] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[8] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[9] | LI Shilin, HU Jingze, WANG Yilin, WANG Qingji, SHAO Lei. Research progress in separation and extraction of high value components by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 420-429. |
[10] | GAO Yufei, LU Jinfeng. Mechanism of heterogeneous catalytic ozone oxidation:A review [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 430-438. |
[11] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[12] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[13] | LI Huaquan, WANG Minghua, QIU Guibao. Behavior of sulfuric acid acidolysis of perovskite concentrates [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 536-541. |
[14] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[15] | ZHANG Tingting, ZUO Xuqian, TIAN Lingdi, WANG Shimeng. Construction method of volatile organic compounds emission inventory and factor database in chemical industry park [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 549-557. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |