Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (10): 4461-4469.DOI: 10.16085/j.issn.1000-6613.2019-0132
• Chemical processes and equipment • Previous Articles Next Articles
Hua JIANG1(),Ziyao ZHANG1,Wuqi GONG2()
Received:
2019-01-21
Online:
2019-10-05
Published:
2019-10-05
Contact:
Wuqi GONG
通讯作者:
宫武旗
作者简介:
姜华(1973—),女,博士,副教授,研究方向为流体机械系统及设备。E-mail:基金资助:
CLC Number:
Hua JIANG,Ziyao ZHANG,Wuqi GONG. Design and research of MVR parallel double-effect evaporation crystallization system[J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4461-4469.
姜华,张子尧,宫武旗. MVR并联双效蒸发结晶系统设计及研究[J]. 化工进展, 2019, 38(10): 4461-4469.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2019-0132
名称及单位 | 文献[ | 计算 | 误差/% |
---|---|---|---|
原料液温度t 0/℃ | | 25 | — |
进料流量F 0/kg·h-1 | 23.3 | 23.3 | — |
进料质量分数w 0/% | | 2 | — |
出料质量分数w 1/% | | 10 | — |
蒸发温度t 1/℃ | 80.1 | 80.1 | — |
蒸发量W/kg·h-1 | 18.6 | 18.6 | — |
蒸发器传热温差Δt/℃ | | 5 | — |
蒸发器换热面积S 1/m2 | 1.38 | 1.44 | -4.3 |
预热器换热面积S 3/m2 | 0.17 | 0.16 | 5.8 |
蒸发器换热量Q 1/kW | 13.07 | 13.04 | 0.2 |
预热器换热量Q 0/kW | 1.16 | 1.22 | -5.2 |
压缩机功率N 1/kW | | 0.331 | 66.9 |
名称及单位 | 文献[ | 计算 | 误差/% |
---|---|---|---|
原料液温度t 0/℃ | | 25 | — |
进料流量F 0/kg·h-1 | 23.3 | 23.3 | — |
进料质量分数w 0/% | | 2 | — |
出料质量分数w 1/% | | 10 | — |
蒸发温度t 1/℃ | 80.1 | 80.1 | — |
蒸发量W/kg·h-1 | 18.6 | 18.6 | — |
蒸发器传热温差Δt/℃ | | 5 | — |
蒸发器换热面积S 1/m2 | 1.38 | 1.44 | -4.3 |
预热器换热面积S 3/m2 | 0.17 | 0.16 | 5.8 |
蒸发器换热量Q 1/kW | 13.07 | 13.04 | 0.2 |
预热器换热量Q 0/kW | 1.16 | 1.22 | -5.2 |
压缩机功率N 1/kW | | 0.331 | 66.9 |
设计任务参数 | 数值 |
---|---|
进料质量分数w 0/% | 5 |
出料质量分数w 1/% | 29 |
进料量F 0/kg·h-1 | 15900 |
蒸发量W/kg·h-1 | 15000 |
蒸发温度t 1/℃ | 100 |
压缩机饱和温升/℃ | 12 |
设计任务参数 | 数值 |
---|---|
进料质量分数w 0/% | 5 |
出料质量分数w 1/% | 29 |
进料量F 0/kg·h-1 | 15900 |
蒸发量W/kg·h-1 | 15000 |
蒸发温度t 1/℃ | 100 |
压缩机饱和温升/℃ | 12 |
编号 | 温度 /℃ | 质量 分数/% | 流量 /kg·h-1 | 焓值 /kJ·kg-1 | ?值 /kW | 比? /kJ·kg-1 | 介质类型 |
---|---|---|---|---|---|---|---|
1 | 20 | 5 | 15900 | — | 484.5 | 109.7 | 溶液 |
2 | 100 | 5 | 15900 | — | 495.5 | 112.2 | |
3 | 102.5 | 29.8 | 2741.4 | — | 35.4 | 46.5 | |
4 | 102.5 | 29.8 | 2877.7 | — | 38.9 | 48.7 | |
5 | 102.5 | 29.8 | 136.3 | — | 1.8 | 46.5 | |
6 | 102.5 | — | 900 | — | 15 | 53.6 | 晶浆 |
7 | — | — | 763.7 | — | 13.2 | 62.2 | 晶体 |
8 | 114.5 | — | 16617 | 2697.9 | 2581.6 | 559.3 | 蒸汽 |
9 | 114.5 | — | 14474.5 | 2697.9 | 2248.8 | 559.3 | |
10 | 114.5 | — | 2025.5 | 2697.9 | 314.7 | 559.3 | |
11 | 102.5 | — | 14577 | 2679.5 | 2025.8 | 500.3 | |
12 | 102.5 | — | 2040 | 2679.5 | 283.5 | 500.3 | |
13 | 102.5 | — | 16617 | 2679.5 | 2309.3 | 500.3 | |
14 | 140.6 | — | 16617 | 2752.4 | 2646 | 573.2 | |
15 | 102.5 | — | 14474.5 | 429.8 | 210.5 | 52.4 | 凝水 |
16 | 102.5 | — | 2025.5 | 429.8 | 29.5 | 52.4 | |
17 | 102.5 | — | 16500 | 429.8 | 240 | 52.4 | |
18 | 26.1 | — | 16500 | 109.4 | 8.3 | 1.8 | |
19 | 26.1 | — | 349.9 | 109.4 | 0.2 | 1.8 |
编号 | 温度 /℃ | 质量 分数/% | 流量 /kg·h-1 | 焓值 /kJ·kg-1 | ?值 /kW | 比? /kJ·kg-1 | 介质类型 |
---|---|---|---|---|---|---|---|
1 | 20 | 5 | 15900 | — | 484.5 | 109.7 | 溶液 |
2 | 100 | 5 | 15900 | — | 495.5 | 112.2 | |
3 | 102.5 | 29.8 | 2741.4 | — | 35.4 | 46.5 | |
4 | 102.5 | 29.8 | 2877.7 | — | 38.9 | 48.7 | |
5 | 102.5 | 29.8 | 136.3 | — | 1.8 | 46.5 | |
6 | 102.5 | — | 900 | — | 15 | 53.6 | 晶浆 |
7 | — | — | 763.7 | — | 13.2 | 62.2 | 晶体 |
8 | 114.5 | — | 16617 | 2697.9 | 2581.6 | 559.3 | 蒸汽 |
9 | 114.5 | — | 14474.5 | 2697.9 | 2248.8 | 559.3 | |
10 | 114.5 | — | 2025.5 | 2697.9 | 314.7 | 559.3 | |
11 | 102.5 | — | 14577 | 2679.5 | 2025.8 | 500.3 | |
12 | 102.5 | — | 2040 | 2679.5 | 283.5 | 500.3 | |
13 | 102.5 | — | 16617 | 2679.5 | 2309.3 | 500.3 | |
14 | 140.6 | — | 16617 | 2752.4 | 2646 | 573.2 | |
15 | 102.5 | — | 14474.5 | 429.8 | 210.5 | 52.4 | 凝水 |
16 | 102.5 | — | 2025.5 | 429.8 | 29.5 | 52.4 | |
17 | 102.5 | — | 16500 | 429.8 | 240 | 52.4 | |
18 | 26.1 | — | 16500 | 109.4 | 8.3 | 1.8 | |
19 | 26.1 | — | 349.9 | 109.4 | 0.2 | 1.8 |
名称 | 规格 | ?损失 /kW | ?效率 /% | 备注 |
---|---|---|---|---|
预热器 | 54.5m2 | 220.7 | 77.5 | 换热量1422.9kW |
降膜蒸发器 | 787m2 | 472.6 | 75.1 | 换热量8958kW, 蒸发量13158.6kg·h-1 |
强制循环 | 110.2m2 | 91.7 | 73.2 | 换热量1253.6kW, 蒸发量1841.4kg·h-1 输入功率66.1kW |
蒸发器 | ||||
蒸汽压缩机 | Δt=12℃ | 126.8 | 72 | 输入功率463.5kW, 压缩比1.5 |
气液分离器 | 6.4m3 | — | — | 输入功率3.0kW |
结晶分离器 | 900 kg·h-1 | — | — | 输入功率3.0kW |
原料液泵 | 16.3m3·h-1 | — | — | 输入功率3.0kW, 效率0.51 |
30m | ||||
凝水泵 | 15.2m3·h-1 | — | — | 输入功率2.2kW, 效率0.50 |
26m | ||||
循环泵 | 6.9m3·h-1 | — | — | 输入功率2.3kW, 效率0.44 |
18.3m |
名称 | 规格 | ?损失 /kW | ?效率 /% | 备注 |
---|---|---|---|---|
预热器 | 54.5m2 | 220.7 | 77.5 | 换热量1422.9kW |
降膜蒸发器 | 787m2 | 472.6 | 75.1 | 换热量8958kW, 蒸发量13158.6kg·h-1 |
强制循环 | 110.2m2 | 91.7 | 73.2 | 换热量1253.6kW, 蒸发量1841.4kg·h-1 输入功率66.1kW |
蒸发器 | ||||
蒸汽压缩机 | Δt=12℃ | 126.8 | 72 | 输入功率463.5kW, 压缩比1.5 |
气液分离器 | 6.4m3 | — | — | 输入功率3.0kW |
结晶分离器 | 900 kg·h-1 | — | — | 输入功率3.0kW |
原料液泵 | 16.3m3·h-1 | — | — | 输入功率3.0kW, 效率0.51 |
30m | ||||
凝水泵 | 15.2m3·h-1 | — | — | 输入功率2.2kW, 效率0.50 |
26m | ||||
循环泵 | 6.9m3·h-1 | — | — | 输入功率2.3kW, 效率0.44 |
18.3m |
主要物流及单元 | 关键操作参数 |
---|---|
加热蒸汽 | 采用饱和水蒸气,压力为0.167MPa,温度为114.5℃,在一效加热器内放热以凝水方式排出,排出凝水不含蒸汽 |
一效系统 | 一效蒸发结晶单元操作温度为100℃,过程为绝热蒸发结晶 |
二效系统 | 二效蒸发结晶单元操作温度为80℃,过程为绝热蒸发结晶 |
三效系统 | 三效蒸发结晶单元操作温度为60℃,过程为绝热蒸发结晶 |
冷却系统 | 冷凝末效二次蒸汽,冷却水进口温度20℃ |
主要物流及单元 | 关键操作参数 |
---|---|
加热蒸汽 | 采用饱和水蒸气,压力为0.167MPa,温度为114.5℃,在一效加热器内放热以凝水方式排出,排出凝水不含蒸汽 |
一效系统 | 一效蒸发结晶单元操作温度为100℃,过程为绝热蒸发结晶 |
二效系统 | 二效蒸发结晶单元操作温度为80℃,过程为绝热蒸发结晶 |
三效系统 | 三效蒸发结晶单元操作温度为60℃,过程为绝热蒸发结晶 |
冷却系统 | 冷凝末效二次蒸汽,冷却水进口温度20℃ |
性能指标 | MVR方案 | 三效蒸发方案 |
---|---|---|
蒸发量/kg·h-1 | 15000 | 15000 |
新鲜蒸汽耗量/kg·h-1 | — | 4545.5 |
蒸汽耗能/kW | — | 3080 |
冷却水量/kg·h-1 | — | 57.9 |
系统用电量/kW | 543.1 | — |
效能系数 | 21.4 | 3.8 |
单位能耗/kJ·kg-1 | 130.3 | 739.2 |
?效率/% | 49.1 | 32.4 |
?损失/kW | 772.6 | 1025.4 |
性能指标 | MVR方案 | 三效蒸发方案 |
---|---|---|
蒸发量/kg·h-1 | 15000 | 15000 |
新鲜蒸汽耗量/kg·h-1 | — | 4545.5 |
蒸汽耗能/kW | — | 3080 |
冷却水量/kg·h-1 | — | 57.9 |
系统用电量/kW | 543.1 | — |
效能系数 | 21.4 | 3.8 |
单位能耗/kJ·kg-1 | 130.3 | 739.2 |
?效率/% | 49.1 | 32.4 |
?损失/kW | 772.6 | 1025.4 |
1 | 全球环保研究网 . 工业废水处理行业发展研究报告(2018) [R/OL]. 2018-09-25. . |
Research GEP . Report on the development of industrial waste water treatment industry(2018) [R/OL]. 2018-09-15. . | |
2 | 高丽丽, 张琳, 杜明照 . MVR蒸发与多效蒸发技术的能效对比分析研究[J]. 现代化工, 2012, 32(10): 84-86. |
GAO Lili , ZHANG Lin , DU Mingzhao . Energy efficiency comparative analysis on MVR and multi-effect evaporation technology [J]. Modern Chemical Industry, 2012, 32(10): 84-86. | |
3 | 赵远扬, 刘广彬, 李连生, 等 . 机械蒸汽再压缩系统的性能分析[J]. 流体机械, 2017, 45(6): 16-20, 60. |
ZHAO Yuanyang , LIU Guangbin , LI Liansheng , et al . Performance analysis on mechanical vapor recompression system [J]. Fluid Machinery, 2017, 45(6): 16-20, 60. | |
4 | HAN Dong , PENG Tao , HE Weifeng , et al . Advanced energy saving in the evaporation system of ammonium sulfate solution with self-heat recuperation technology [J]. Energy Procedia, 2014, 61: 131-136. |
5 | 李帅旗, 王汉治, 黄冲, 等 . 基于MVR技术的单级双效蒸发浓缩系统性能分析[J]. 新能源进展, 2018, 6(1): 36-41. |
LI Shuaiqi , WANG Hanzhi , HUANG Chong , et al . Performance analysis of single-stage and double-effect evaporative concentration system based on MVR technology [J]. Advances in New and Renewable Energy, 2018, 6(1): 36-41. | |
6 | 顾承真, 闵兆升, 洪厚胜 . 机械蒸汽再压缩蒸发系统的性能分析[J]. 化工进展, 2014, 33(1):30-35. |
GU Chengzhen , MIN Zhaosheng , HONG Housheng . Performance analysis of mechanical vapor recompression evaporation system [J]. Chemical Industry and Engineering Progress, 2014, 33(1):30-35. | |
7 | 顾承真, 洪厚胜, 张志强, 等 . 罗茨压缩机驱动MVR热泵系统的实验研究[J]. 化工进展, 2015, 34(6):1602-1606,1612. |
GU Chengzhen , HONG Housheng , ZHANG Zhiqiang , et al . Experimental study of mechanical vapor recompression of heat pump driven by roots compressor [J]. Chemical Industry and Engineering Progress, 2015, 34(6):1602-1606, 1612. | |
8 | ETTOUNEY H . Design of single-effect mechanical vapor compression [J]. Desalination, 2006, 190: 1-15. |
9 | MABROUK A A , NAFEY A S , FATH H E S . Analysis of a new design of a multi-stage flash-mechanical vapor compresion desalination process [J]. Desalination, 2007, 204: 482-500. |
10 | SHEN Jiubing , XING Ziwen , WANG Xiaolin , et al . Analysis of a single-effect mechanical vapor compression desalination system using water injected twin screw compressors [J]. Desalination, 2014, 333: 146-153. |
11 | 越云凯, 吴小华, 张振涛 . MVR海水淡化系统运行特性分析与优化[J]. 工程热物理学报, 2018, 39(9): 1985-1990. |
YUE Yunkai , WU Xiaohua , ZHANG Zhentao . Operation characteristic analysis and optimization of MVR seawater desalination system [J]. Journal of Engineering Thermophysics, 2018, 39(9): 1985-1990. | |
12 | 石成君, 周亚素, 孙韶, 等 . 机械蒸汽再压缩蒸发技术高盐度废水处理系统的性能分析[J]. 水处理技术, 2013, 39(12):63-68. |
SHI Chengjun , ZHOU Yasu , SUN Shao , et al . Performance and analysis of mechanical vapor recompression for high salinity wastewater desalination system [J]. Technology of Water Treatment, 2013, 39(12): 63-68. | |
13 | ZHOU Yasu , SHI Chengjun , DONG Guoqiang . Analysis of a mechanical vapor recompression wastewater distillation system [J]. Desalination, 2014, 353: 91-97. |
14 | 王汉治, 李帅旗, 黄冲, 等 . 喷气增焓型单级MVR蒸发结晶系统性能分析[J]. 化工进展, 2018, 37(9): 3312-3319. |
WANG Hanzhi , LI Shuaiqi , HUANG Chong , et al . Performance analysis of single-effect MVR evaporative crystallization system using vapor injected compressor [J]. Chemical Industry and Engineering Progress, 2018, 37(9): 3312-3319. | |
15 | AI Songhui , WANG Baolong , LI Xianting , et al . Numerical analysis on the performance of mechanical vapor recompression system for strong sodium chloride solution enrichment [J]. Applied Thermal Engineering, 2018, 137: 386-394. |
16 | NAFEY A S , FATH H E S , MABROUK A A . Thermoeconomic design of a multi-effect evaporation mechanical vapor compression (MEE-MVC) desalination process [J]. Desalination, 2008, 230:1-15. |
17 | JAMIL M A , ZUBAIR S M . Design and analysis of a forward feed multi-effect mechanical vapor compression desalination system: an exergo-economic approach [J]. Energy, 2017, 140: 1107-1120. |
18 | 高磊, 张凯, 董冰, 等 . 螺杆水蒸气压缩机的MVR系统在碱回收中的应用[J]. 化工进展, 2014, 33(11): 3112-3117. |
GAO Lei , ZHANG Kai , DONG Bing , et al . Research of MVR system with twin-screw vapor compressor in lye recovery [J]. Chemical Industry and Engineering Progress, 2014, 33(11): 3112-3117. | |
19 | 刘军, 张冲, 杨鲁伟, 等 . 夹套式MVR热泵蒸发浓缩系统性能分析[J]. 化工学报, 2015, 66(5): 1904-1911. |
LIU Jun , ZHANG Chong , YANG Luwei , et al . Performance analysis of jacketed MVR heat pump evaporation concentration system [J]. CIESC Journal, 2015, 66(5): 1904-1911. | |
20 | LIANG Lin , HAN Dong , MA Ran , et al . Treatment of high-concentration wastewater using double-effect mechanical vapor recompression [J]. Desalination, 2013, 314: 139-146. |
21 | 梁林 . 处理高浓度含盐废水的机械蒸汽再压缩系统设计及性能研究[D]. 南京: 南京航空航天大学, 2013. |
LIANG Lin . Design and performance research of mechanical vapor recompression system for treating high concentration saline wastewater [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013. | |
22 | 郝帅 . 机械蒸汽再压缩技术4种典型蒸发器的比较[J]. 中国乳品工业, 2017, 45(4): 41-43. |
HAO Shuai . Comparation of four kinds of typical evaporators in the mechanical vapour recompression technology [J]. China Dairy Industry, 2017, 45(4): 41-43. | |
23 | 刘德亮 . 机械蒸汽再压缩蒸发结晶系统性能研究[D]. 杭州: 浙江工业大学, 2013. |
LIU Deliang . Performance research of mechanical vapor recompression evaporation and crystallization system [D]. Hangzhou: Zhejiang University of Technology, 2013. | |
24 | 朱跃钊, 廖传华, 史勇春 . 传热过程与设备[M]. 北京: 中国石化出版社, 2008: 113, 284. |
ZHU Yuezhao , LIAO Chuanhua , SHI Yongchun . Heat transfer process and equipment [M]. Beijing: China Petrochemical Press, 2008: 113, 284. | |
25 | 焦冬生 . 机械压汽蒸馏海水淡化系统的可用能分析[J]. 太阳能学报, 2008, 29(10): 1197-1203. |
JIAO Dongsheng . Exergy analysis of a experimental mechanic vapor compression distillation system [J]. Acta Energiae Solaris Sinica, 2008, 29(10):1197-1203. | |
26 | NAFEY A S , FATH H E S , MABROUK A A . Exergy and thermoeconomic evaluation of MSF process using a new visual package [J]. Desalination, 2006, 201: 224-240. |
27 | MABROUK A A , NAFEY A S , FATH H E S , et al . Analysis of a new design of a multi-stage flash-mechanical vapor compression desalination process [J]. Desalination, 2007, 204: 482-500. |
28 | 大连理工大学 . 化工原理:上册[M]. 2版. 北京:高等教育出版社, 2009: 337-338. |
Dalian University of Technology . Unit operation of chemical engineering: Volume 1[M]. 2nd edition.Beijing: Higher Education Press, 2009: 337-338. | |
29 | 石成君 . 机械蒸汽再压缩蒸发技术在高盐度废水处理中的性能研究[D]. 上海: 东华大学, 2014. |
SHI Chengjun . Research of mechanical vapor recompression evaporation technology in high salinity wastewater treatment system [D]. Shanghai: Donghua University, 2014. | |
30 | 庞卫科, 林文举, 潘麒麟, 等 . 离心风机驱动机械蒸汽再压缩热泵系统的性能分析[J]. 机械工程学报, 2013, 49(12):142-146. |
PANG Weike , LIN Wenju , PAN Qilin , et al . Performance analysis of mechanical vapor recompression heat pump driven by centrifuge fan [J]. Journal of Mechanical Engineering, 2013, 49(12): 142-146. | |
31 | 陈丽丽 . 复杂水溶液体系通用活度测定设备的研制及其实际应用[D]. 长沙: 湖南大学, 2015. |
CHEN Lili . A general apparatus research for the determination of water activity applied in complex solution system [D]. Changsha: Hunan University, 2015. | |
32 | 邓润亚 . 海水淡化系统能量综合利用与经济性研究[D]. 北京: 中国科学院研究生院, 2009. |
DENG Runya . Energy comprehensive utilization and economy study on seawater desalination system [D]. Beijing: Graduate School of the Chinese Academy of Sciences, 2009. |
[1] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[2] | LI Jitong, WANG Gang, XIONG Yaxuan, XU Qian. Energy and exergy analysis of single-effect absorption refrigeration system with different refrigerants [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 104-112. |
[3] | DONG Jiayu, WANG Simin. Experimental on ultrasound enhancement of para-xylene crystallization characteristics and regulation mechanism [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4504-4513. |
[4] | SHI Keke, LIU Muzi, ZHAO Qiang, LI Jinping, LIU Guang. Properties and research progress of magnesium based hydrogen storage materials [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4731-4745. |
[5] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[6] | YANG Hongmei, GAO Tao, YU Tao, QU Chengtun, GAO Jiapeng. Treatment of refractory organics sulfonated phenolic resin with ferrate [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3302-3308. |
[7] | ZHANG Chenyu, WANG Ning, XU Hongtao, LUO Zhuqing. Performance evaluation of the multiple layer latent heat thermal energy storage unit combined with nanoparticle for heat transfer enhancement [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2332-2342. |
[8] | WU Xia, JIANG Xuntao, ZHANG Yuxiao, LYU Huiyuan, HUANG Fang, YU Xiaoxi. Protein crystallization research based on droplet microfluidics [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2024-2030. |
[9] | ZHANG Han, ZHANG Xiaojing, MA Bingbing, NAI Can, LIU Shuoshuo, MA Yongpeng, SONG Yali. Feasibility of starting anammox process with municipal waste sludge as seed sludge [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1080-1088. |
[10] | LIU Dan, FAN Yunjie, WANG Huimin, YAN Zheng, LI Pengfei, LI Jiacheng, CAO Xuebo. High value-added functional porous carbon materials from waste PET and their applications [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 969-984. |
[11] | ZHANG Yingjie, LU Jiayue, WANG Fanggang. Synthesis of a new MCER and its performance in removing Cu(Ⅱ) from water [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5558-5566. |
[12] | SUN Mengwei, LIU Zhuang, XIE Rui, JU Xiaojie, WANG Wei, CHU Liangyin. Preparation of Lanthanum ion intercalated MoS2 membrane for treating dyeing wastewater with high brine [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 346-353. |
[13] | QI Yabing, JIA Honglei. Progress on separation and purification for organic compounds by melt crystallization [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 373-385. |
[14] | FAN Jiahao, ZHANG Yang, FAN Binqiang, ZHANG Hedong, ZHENG Shili, ZOU Xing. Crystallization kinetics of (NH4)2SO4 in mixed solution of (NH4)2SO4 and Na2SO4 and the influence of Fe/Al/Mn/Cr ions on crystallization [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 488-496. |
[15] | HU Jinwen, MENG Guangyuan, ZHANG Zhijie, ZHANG Ning, ZHANG Xinwan, CHEN Peng, LI Tong, LIU Yongdi, ZHANG Lehua. Application of artificial intelligence model in electrochemical water treatment process [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 497-506. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |