1 |
PANCHAL S , MCGRORY J , KONG J , et al . Cycling degradation testing and analysis of a LiFePO4 battery at actual conditions[J]. International Journal of Energy Research, 2017, 41(3): 2565-2575.
|
2 |
HANNAN M A , LIPU M S H , HUSSAIN A , et al . A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: challenges and recommendations[J]. Renewable and Sustainable Energy Reviews, 2017, 78: 834-854.
|
3 |
XIAO P H , HENKELMAN G . Kinetic Monte Carlo study of Li intercalation in LiFeO4 [J]. ACS Nano, 2018, 12(1): 844-851.
|
4 |
WANG L , PAN C , LIU L , et al . On-board state of health estimation of LiFePO4 battery pack through differential voltage analysis[J]. Applied Energy, 2018, 168: 465-472.
|
5 |
HUANG X , ZHANG K , LIANG F , et al . Optimized solvothermal synthesis of LiFePO4 cathode material for enhanced high-rate and low temperature electrochemical performances[J]. Electrochimica Acta, 2017, 258: 1149-1159.
|
6 |
RUI X H , JIN Y , FENG X Y , et al . A comparative study on the low-temperature performance of LiFeO4/C and Li3V2(PO4)3/C cathodes for lithium-ion batteries[J]. Journal of Power Sources, 2011, 196: 2109-2114.
|
7 |
JING W , XU G G , LIN Y B , et al . The role of Na and Mg doping on the electronic conductivity of LiFePO4: first-principles investigations[J]. Advanced Materials Research, 2012, 629: 64-69.
|
8 |
LIAO X Z , MA Z F , GONG Q , et al . Low-temperature performance of LiFePO4/C cathode in a quaternary carbonate-based electrolyte[J]. Electrochemistry Communications, 2008, 10: 691-694.
|
9 |
ZHENG F , YANG C , JI X , et al . Surfactants assisted synthesis and electrochemical properties of nano-LiFePO4/C cathode materials for low temperature applications[J]. Journal of Power Sources, 2015, 288: 337-344.
|
10 |
SONG J J , SUN B , LIU H , et al . Enhancement of the rate capability of LiFePO4 by a new highly graphitic carbon-coating method[J]. ACS Applied Materials & Interfaces, 2016, 8(24): 15225-15231.
|
11 |
TIAN R Y , LIU H Q , JIANG Y , et al . Drastically enhanced high-rate performance of carbon-coated LiFePO4 nanorods using a green chemical vapor deposition (CVD) method for lithium ion battery: a selective carbon coating process[J]. ACS Applied Materials & Interfaces, 2015, 7(21): 11377-11386.
|
12 |
HA S H, LEE Y J . Core-shell LiFePO4/carbon-coated reduced graphene oxide hybrids for high-power lithium-ion battery cathodes[J]. Chemistry: A European Journal, 2015, 21(5): 2132-2138.
|
13 |
JOHNSON I D , BLAGOVIDOVA E , DINGWALL P A , et al . High power Nb-doped LiFePO4 Li-ion battery cathodes; pilot-scale synthesis and electrochemical properties[J]. Journal of Power Sources, 2016, 326: 476-481.
|
14 |
JOHNSON I D , LUBKE M , WU O Y , et al . Pilot-scale continuous synthesis of a vanadium-doped LiFePO4/C nanocomposite high-rate cathodes for lithium-ion batteries[J]. Journal of Power Sources, 2016, 302: 410-418.
|
15 |
XU D , WANG P F , SHEN B W . Synthesis and characterization of sulfur-doped carbon decorated LiFePO4 nanocomposite as high performance cathode material for lithium-ion[J]. Ceramics International, 2016, 42(4): 5331-5338.
|
16 |
KANG W P , ZHAO C H , LIU R , et al . Ethylene glycol-assisted nanocrystallization of LiFePO4 for a rechargeable lithium-ion battery cathode[J]. CrystEngComm, 2012, 14: 2245-2250.
|