1 |
ZHANG Q , HU S , ZHANG L L , et al . Facile fabrication of mesopore-containing ZSM-5 zeolite from spent zeolite catalyst for methanol to propylene reaction[J]. Green Chemistry, 2013, 16(1): 77-81.
|
2 |
WANG C , WANG Q , XU J , et al . Direct detection of supramolecular reaction centers in the methanol-to-olefins conversion over zeolite H-ZSM-5 by 13C-27Al solid-state NMR spectroscopy[J]. Angewandte Chemie, 2016, 128(7): 2553-2557.
|
3 |
INAGAKI S , SHINODA S , KNOEKO Y , et al . Facile fabrication of ZSM-5 zeolite catalyst with high durability to coke formation during catalytic cracking of paraffins[J]. ACS Catalysis, 2013, 3(1): 74-78.
|
4 |
KIM J , CHOI M , RYOO R . Effect of mesoporosity against the deactivation of MFI zeolite catalyst during the methanol-to-hydrocarbon conversion process[J]. Journal of Catalysis, 2010, 269(1): 219-228.
|
5 |
SCHMIDT F , HOFFMANN C , GIORDANINO F , et al . Coke location in microporous and hierarchical ZSM-5 and the impact on the MTH reaction[J]. Journal of Catalysis, 2013, 307(11): 238-245.
|
6 |
LI H Y , WANG Y Q , MENG F J , et al . Controllable fabrication of single-crystalline, ultrafine and high-silica hierarchical ZSM-5 aggregates via solid-like state conversion[J]. RSC Advances, 2017, 7: 25605.
|
7 |
CHOI M , NA K , KIM J , et al . Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts[J]. Nature, 201, 40(47): 246-249.
|
8 |
HU Z J , ZHANG H B , WANG L , et al . Highly stable boron-modified hierarchical nanocrystalline ZSM-5 zeolite for the methanol to propylene reaction[J]. Catalysis Science & Technology, 2014, 4(9): 2891-2895.
|
9 |
NIMA M , GUILLET-NICOLAS R , KLEITZ F . Synthesis of engineered zeolitic materials: from classical zeolites to hierarchical core-shell materials[J]. Advanced Materials, 2018, 30(16): 1704439.
|
10 |
PSERRANO D , GRIEKEN R V , SANCHEZ P , et al . Crystallization mechanism of all-silica zeolite beta in fluoride medium[J]. Microporous & Mesoporous Materials, 2001, 46(1): 35-46.
|
11 |
VAN-GRIEKEN R , SOTELO G L , MENENDEZ M , et al . Anomalous crystallization mechanism in the synthesis of nanocrystalline ZSM-5[J]. Microporous & Mesoporous Materials, 2000, 39(1): 135-147.
|
12 |
邵娟, 付廷俊, 常江伟, 等 . ZSM-5分子筛催化甲醇制汽油反应中的晶粒粒径效应研究[J]. 燃料化学学报, 2017, 45(1): 75-83.
|
|
SHAO Juan , FU Tingjun , CHANG Jiangwei , et al . Effect of ZSM-5 crystal size on its catalytic properties for conversion of methanol to gasoline[J]. Journal of Fuel Chemistry and Technology, 2017, 45(1): 75-83.
|
13 |
LIU J , LI Y M , CHEN Z T , et al . Hierarchical ZSM-5 zeolites with tunable sizes of building blocks for efficient catalytic cracking of i-butane[J]. Industrial & Engineering Chemistry Research, 2018, 57(31): 10327-10335.
|
14 |
YANG L Z , LIU Z Y , LIU Z , et al . Correlation between H-ZSM-5 crystal size and catalytic performance in the methanol-to-aromatics reaction[J]. Chinese Journal of Catalysis, 2017, 38(4): 683-690.
|
15 |
WANG Y F , ZHENG Y . Synthesis of ZSM-5 hierarchical microsphere-like particle by two stage varying temperature crystallization without secondary template[J]. Chemical Engineering Journal, 2011, 166(3): 1083-1089.
|
16 |
PETUSHKOV A , YOON S , LARSEN S C . Synthesis of hierarchical nanocrystalline ZSM-5 with controlled particle size and mesoporosity[J]. Microporous & Mesoporous Materials, 2011, 137(1): 92-100.
|
17 |
SADEGHPOUR P , HAGHIGHI M . High-temperature and short-time hydrothermal fabrication of nanostructured ZSM-5 catalyst with suitable pore geometry and strong intrinsic acidity used in methanol to light olefins conversion[J]. Advanced Powder Technology, 2018, 2(9): 1-14.
|
18 |
YU Q J , ZHANG Q , LIU J W , et al . Inductive effect of various seeds on the organic template-free synthesis of zeolite ZSM-5[J]. CrystEngComm, 2013, 15(38): 7680-7687
|
19 |
JIANG X , SU X F , BAI X F . Conversion of methanol to light olefins over nanosized [Fe,Al]ZSM-5 zeolites: influence of Fe incorporated into the framework on the acidity and catalytic performance[J]. Microporous & Mesoporous Materials, 2018, 263: 243-250.
|
20 |
CHEN H B , WANG Y Q , SUN C , et al . Aggregates of nano-sized ZSM-5 crystals synthesized with template-free and alkali-treated seeds for improving the catalytic performance in MTP reaction[J]. Catalysis Communications, 2017, 100: 107-111.
|
21 |
XU F , DONG M , GOU W Y , et, al . Rapid tuning of ZSM-5 crystal size by using polyethylene glycol or colloidal silicalite-1 seed[J]. Microporous & Mesoporous Materials, 2012, 163: 192-200.
|
22 |
JANG H G , MIN H K , LEE J K, et, al . SAPO-34 and ZSM-5 nanocrystals’ size effects on their catalysis of methanol-to-olefin reactions[J]. Applied Catalysis A: General, 2012, 437/438: 120-130.
|
23 |
VISWANADHAM N , SAXENA S K . Enhanced performance of nano-crystalline ZSM-5 in acetone to gasoline (ATG) reaction[J]. Fuel, 2013, 105(2): 490-495.
|
24 |
WANG N , SUN W J , HOU Y , et al . Crystal-plane effects of MFI zeolite in catalytic conversion of methanol to hydrocarbons[J]. Journal of Catalysis, 2018, 360: 89-96.
|
25 |
HU S , SHAN J , ZHANG Q , et al . Selective formation of propylene from methanol over high-silica nanosheets of MFI zeolite[J]. Applied Catalysis A: General, 2012, 445/446: 215-220.
|