Chemical Industry and Engineering Progress ›› 2020, Vol. 39 ›› Issue (3): 1115-1121.DOI: 10.16085/j.issn.1000-6613.2019-1080
• Materials science and technology • Previous Articles Next Articles
Xiaohua LI(),Zichun YANG(
),Kunfeng LI,Shuang ZHAO,Zhifang FEI,Zhen ZHANG
Received:
2019-07-08
Online:
2020-04-03
Published:
2020-03-05
Contact:
Zichun YANG
通讯作者:
杨自春
作者简介:
李肖华(1995—),男,硕士研究生,研究方向为纳米绝热材料。E-mail:基金资助:
CLC Number:
Xiaohua LI,Zichun YANG,Kunfeng LI,Shuang ZHAO,Zhifang FEI,Zhen ZHANG. Preparation and characterization of transparent and compressible methylsilsesquioxane aerogels using MTES as precursor[J]. Chemical Industry and Engineering Progress, 2020, 39(3): 1115-1121.
李肖华,杨自春,李昆锋,赵爽,费志方,张震. 以MTES为硅源制备透明可压缩的甲基倍半硅氧烷气凝胶及其表征[J]. 化工进展, 2020, 39(3): 1115-1121.
样品 | MTES /mL | CTAB /g | 酸性去离子水 (0.02mol·L-1) /mL | 氨水 (6.5mol·L-1) /mL |
---|---|---|---|---|
M1-1 | 5 | 1 | 30 | 0.06 |
M1-2 | 10 | 1 | 30 | 0.06 |
M1-3 | 15 | 1 | 30 | 0.06 |
M1-4 | 20 | 1 | 30 | 0.06 |
样品 | MTES /mL | CTAB /g | 酸性去离子水 (0.02mol·L-1) /mL | 氨水 (6.5mol·L-1) /mL |
---|---|---|---|---|
M1-1 | 5 | 1 | 30 | 0.06 |
M1-2 | 10 | 1 | 30 | 0.06 |
M1-3 | 15 | 1 | 30 | 0.06 |
M1-4 | 20 | 1 | 30 | 0.06 |
样品 | 密度 /mg·cm-3 | 比表面积 /m2·g-1 | 平均孔径 /nm | 可见光 透光率/% | 疏水角 /(°) |
---|---|---|---|---|---|
M1-1 | 52 | 682 | 7.8 | 56 | 149 |
M1-2 | 75 | 663.1 | 9.9 | 89 | 151 |
M1-3 | 126 | 581.6 | 13.3 | 82 | 149 |
M1-4 | 168 | 555 | 13.0 | 72 | 150 |
样品 | 密度 /mg·cm-3 | 比表面积 /m2·g-1 | 平均孔径 /nm | 可见光 透光率/% | 疏水角 /(°) |
---|---|---|---|---|---|
M1-1 | 52 | 682 | 7.8 | 56 | 149 |
M1-2 | 75 | 663.1 | 9.9 | 89 | 151 |
M1-3 | 126 | 581.6 | 13.3 | 82 | 149 |
M1-4 | 168 | 555 | 13.0 | 72 | 150 |
三官能团硅源 | MTES气凝胶 | MTES在有机溶剂中制备的气凝胶 | MTMS在水溶剂中制备的气凝胶 | MTMS在有机溶剂中制备的气凝胶 |
---|---|---|---|---|
密度/mg·cm-3 | 52~168 | 10[ | 35~247[ | 41~61[ |
热导率/mW·m-1·K-1 | 21~25 | 38[ | 26~35[ | 36~57[ |
三官能团硅源 | MTES气凝胶 | MTES在有机溶剂中制备的气凝胶 | MTMS在水溶剂中制备的气凝胶 | MTMS在有机溶剂中制备的气凝胶 |
---|---|---|---|---|
密度/mg·cm-3 | 52~168 | 10[ | 35~247[ | 41~61[ |
热导率/mW·m-1·K-1 | 21~25 | 38[ | 26~35[ | 36~57[ |
样品 | 杨氏模量 /10-3MPa | 最大载荷 /10-3MPa | 最大形变 /% | 回弹率 /% |
---|---|---|---|---|
M1-1 | 56 | 48 | 50 | 58 |
M1-2 | 141 | 146 | 50 | 62 |
M1-3 | 374 | 463 | 50 | 60 |
M1-4 | 526 | 824 | 50 | 75 |
样品 | 杨氏模量 /10-3MPa | 最大载荷 /10-3MPa | 最大形变 /% | 回弹率 /% |
---|---|---|---|---|
M1-1 | 56 | 48 | 50 | 58 |
M1-2 | 141 | 146 | 50 | 62 |
M1-3 | 374 | 463 | 50 | 60 |
M1-4 | 526 | 824 | 50 | 75 |
1 | DORCHEH A S,ABBASI M H.Silica aerogel, synthesis, properties and characterization[J].Journal of Materials Processing Technology,2008,199(1/2/3):10-26. |
2 | 何方,吴菊英,黃渝鸿,等.影响二氧化硅气凝胶隔热涂料热导率的因素[J].化工进展,2014,33(8):2134-2139. |
HE Fang,WU Juying,HUANG Yuhong,et al.Effect of contents and sizes on the thermal conductivity of silica aerogel thermal insulation coatings[J].Chemical Industry and Engineering Progress,2014,33(8):2134-2139. | |
3 | KISTLER S S.Coherent expanded-aerogels[J].Journal of Chemical Physical,1931,36(1):52-64. |
4 | JIANG Y,FENG J Z,FENG J.Synthesis and characterization of ambient-dried microglass fibers/silica aerogel nanocomposites with low thermal conductivity[J].Journal of Sol-Gel Science and Technology,2017,83(1):64-71. |
5 | 闫秋会,孙晓阳,罗杰任,等.SiO2气凝胶提高岩棉和玻璃棉性能的实验研究[J].化工进展,2019,38(6):2847-2853. |
YAN Qiuhui,SUN Xiaoyang,LUO Jieren,et al.Experimental study on improving the performance of rock wool and glass wool by silica aerogel[J].Chemical Industry and Engineering Prgress.2019,38(6):2847-2853. | |
6 | FENG J,LE D,NGUYEN S T,et al.Silica-cellulose hybrid aerogels for thermal and acoustic insulation applications[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2016,506:298-305. |
7 | ESKANDARI N,MOTAHARI S,ATOUTFI Z,et al.Thermal, mechanical, and acoustic properties of silica-aerogel/UPVC composites[J].Journal of Applied Polymer Science,2017,134(14):1-8. |
8 | FEI Z F,LI K F,YANG Z C,et al.Synthesis and characterization of the APTES cross-lingked polyimide aerogels[J].Material Guide,2018,32(20):138-142. |
9 | WANG M,FENG J,JIANG Y,et al.Preparation and properties of the multi-layer aerogel thermal insulation composites[J].Heat and Mass Transfer,2018,54(9):2793-2798 |
10 | TAMON H,SONE T,OKAZAKI M.Control of mesoporous structure of silica aerogel prepared from TMOS[J].Journal of Colloid & Interface Science,1997,188(1):162-167. |
11 | HEGDE N D,RAO A V.Physical properties of methyltrimethoxysilane based elastic silica aerogels prepared by the two-stage sol-gel process[J].Journal of Materials Science,2007,42(16):6965-6971. |
12 | 陈宇卓,欧忠文,刘朝辉.甲基三甲氧基硅烷改性水玻璃基自疏水SiO2气凝胶的制备[J].硅酸盐学报,2018,46(4):511-517. |
CHEN Yuzhuo,Zhongwen OU,LIU Chaohui.Preparation and properties of self-hydrophobic silica aerogel based on methltrimethoxysilane/water glass[J].Journal of the Chinese Ceramic Society,2018,46(4):511-517. | |
13 | NADARGI D Y,LATTHE S S,HIRASHIMA H,et al.Studies on rheological properties of methyltriethoxysilane (MTES) based flexible superhydrophobic silica aerogels[J].Microporous and Mesoporous Materials,2009,117:617-626. |
14 | CUI S,LIU Y,FAN M H,et al.Temperature dependent microstructure of MTES modified hydrophobic silica aerogels[J].Materials Letters,2011,65(4):606-609. |
15 | HEDGE N D,HIRASHIMA H,RAO A V.Two step sol-gel processing of TEOS based hydrophobic silica aerogels using trimethylethoxysilane as aco-precursor[J].Journal of Porous Materials,2007,14(2):165-171. |
16 | KANG S K,CHOI S Y.Synthesis of low-density silica gel at ambient pressure: effect of heat treatment[J].Journal of Materials Science,2000,35(19):4971-4976. |
17 | NADARGI D Y,RAO A V.Methyltriethoxysilane: new precursor for synthesizing silica aerogels[J].Journal of Alloys and Compounds,2009,467(1/2):397-404. |
18 | YU Y,WU X,GUO D,et al.Preparation of flexible, hydrophobic, and oleophilic silica aerogels based on a methyltriethoxysilane precursor[J].Journal of Materials Science,2014,49:7715-7722. |
19 | CHENG X,LI C,LI Z,et al.Rapid synthesis of ambient pressure dried monolithic silica aerogels using water as the only solvent[J].Materials Letters,2017,204:157-160. |
20 | KANAMORI K,AIZAWA M,NAKANISHI K,et al.New transparent methylsilsesquioxane aerogels and xerogels with improved mechanical properties[J].Advanced Materials,2010,19(12):1589-1593. |
21 | SARAWADE P B,KIM J K,KIM H K,et al.High specific surface area TEOS-based aerogels with large pore volume prepared at an ambient pressure[J].Applied Surface Science,2007,254(2):574-579. |
22 | SHAO Z,HE X,CHENG X,et al.A simple facile preparation of methyltriethoxysilane based flexible silica aerogel monoliths[J].Materials Letters,2017,204:93-96. |
23 | HAYASE G,KANAMORI K,MAENO A,et al.Dynamic spring-back behavior in evaporative drying of polymethylsilsesquioxane monolithic gels for low-density transparent thermal superinsulators[J].Journal of Non-Crystalline Solids,2016,434:115-119. |
24 | 祖国庆,沈军,邹丽萍,等.弹性气凝胶的制备及其力学、热学性能研究[J].无机材料学报,2014,29(4):417-422. |
ZU Guoqing,SHEN Jun,ZHOU Liping,et al.Preparation, mechanical properties and thermal properties of elastic aerogels[J].Journal of Inorganic Materials,2014,29(4):417-422. | |
25 | 刘洪国,孙德军,郝京诚.新编胶体与界面化学[M].北京:化学工业出版社,2016. |
LIU Hongguo,SUN Dejun,HE Jingcheng.New colloid and interface chemistry[M].Beijing:Chemical Industry Press,2016. | |
26 | YAN L,REN H,ZHU J,et al.One-step eco-friendly fabrication of classically monolithic silica aerogelsvia water solvent system and ambient pressure drying[J].Journal of Porous Materials,2019,26(3):785-791. |
27 | 肖进新,赵振国.表面活性剂应用原理[M].2版. 北京:化学工业出版社,2003. |
XIAO Jinxin,ZHAO Zhenguo.Surfactant application principle[M].2nd ed.Beijing:Chemical Industry Press,2003. | |
28 | LI Y,DU A,SHEN J,et al.Temperature dependence of dynamic mechanical behaviors in low density MTMS-derived silica aerogel[J].Journal of Porous Materials,2018,25(4):1229-1235. |
29 | KANAMORI K,AIZAWA M,NAKANISHI K,et al.Elastic organic-inorganic hybrid aerogels and xerogels[J].Journal of Sol-Gel Science and Technology,2008,48:172-181. |
30 | KANAMORI K,NAKANISHI K,HANADA T.Sol-gel synthesis, porous structure, and mechanical property of polymethylsilsesquioxane aerogels[J].Journal of the Ceramic Society of Japan,2009,117:1333-1338. |
[1] | WANG Xin, WANG Bingbing, YANG Wei, XU Zhiming. Anti-scale and anti-corrosion properties of PDA/PTFE superhydrophobic coating on metal surface [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4315-4321. |
[2] | CHEN Xiangli, LI Qianqian, ZHANG Tian, LI Biao, LI Kangkang. Research progress on self-healing oil/water separation membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3600-3610. |
[3] | LIU Zhanjian, FU Yuxin, REN Lina, ZHANG Xiguang, YUAN Zhongtao, YANG Nan, WANG Huaiyuan. New research progress of superhydrophobic coatings in the field of anti-corrosion and anti-scaling [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2999-3011. |
[4] | LU Tao, HU Jiayi, XU Cheng, HU Xinlin, GUO Qingyang, LI Meng. Facile synthesis of superhydrophobic sponge for efficient separation of oil/water mixture [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5353-5362. |
[5] | ZHAN Xun, CHEN Jian, YANG Zhaozhe, WU Guomin, KONG Zhenwu, SHEN Kuizhong. Progress on superhydrophobic materials from nanocellulose [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4303-4313. |
[6] | ZHU Xuedan, YAO Yali, MA Lili, WANG Jiaxin, YANG Jie, PENG Lei, HE Jinmei, QU Mengnan. Progress in preparation and application of superhydrophobic materials based on polyvinyl chloride [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3676-3688. |
[7] | LI Zheng, NIU Jingdong, HE Guangze, ZHANG Lanhe, ZHANG Haifeng. Preparation of PVDF-PFTS/SiO2 membrane and its resistance mixed fouling performance [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2713-2721. |
[8] | LIANG Ge, HUANG Xiangfeng, LIU Wanqi, XIONG Yongjiao, PENG Kaiming. A review of superhydrophobic three-dimensional porous materials for oil/water separation of emulsions [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6557-6572. |
[9] | MAO Gangtao, LI Zhiping, WANG Kai, DING Yao. Analysis of the characteristics of the formation and dissociation of carbon dioxide hydrate in the fully visualized reactor [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5363-5372. |
[10] | ZOU Xingyu, ZHAO Wenxia, LIU Yong, XU Ruimei. Growth of MOFs on carbonized leaf vein network for preparing transparent supercapacitor [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 350-358. |
[11] | YUAN Yuting, FENG Yongchao, YI Honghong, TANG Xiaolong, YU Qingjun, ZHANG Yuanyuan, WEI Jinghui, MENG Xianzheng. Research progress of superhydrophobic surface materials and its application in air pollution control [J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4327-4345. |
[12] | LEI Yu, TIAN Mengmeng, ZHANG Xinya, JIANG Xiang. Research progress on the self-healing property and applications of superhydrophobic surfaces [J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2624-2633. |
[13] | ZHENG Longzhu, SU Xiaojing, LI Hongqiang, GUAN Hang, GUZINUER Ababaikeli, FENG Haiyang, WEI Ye, LAI Xuejun, ZENG Xingrong. Progress in construction and application of functional superhydrophobic surfaces [J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2634-2645. |
[14] | LI Gen, LI Jidong. Preparation and characterization of injectable nHA/PU composite porous scaffolds for bone repair [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6800-6806. |
[15] | Rui HOU,Guiqun LI,Yan ZHANG,Wenhao DING,Baoqin ZHANG,Mingjun LI. Application of polymer phase separation technique in preparation of superhydrophobic surface [J]. Chemical Industry and Engineering Progress, 2020, 39(2): 616-626. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 954
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 401
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |