Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (6): 3443-3456.DOI: 10.16085/j.issn.1000-6613.2024-0689
• Energy processes and technology • Previous Articles
LI Hongwei1(
), XU Hanqiao1, ZHAO Yan1, LIU Yaozong2, TENG Zhijun2, JI Dong1, LI Guixian1
Received:2024-04-25
Revised:2024-06-18
Online:2025-07-08
Published:2025-06-25
Contact:
LI Hongwei
李红伟1(
), 许涵侨1, 赵燕1, 刘耀宗2, 滕志君2, 季东1, 李贵贤1
通讯作者:
李红伟
作者简介:李红伟(1988—),男,博士,副教授,硕士生导师,研究方向为电催化。E-mail:lhwzqy@163.com。
基金资助:CLC Number:
LI Hongwei, XU Hanqiao, ZHAO Yan, LIU Yaozong, TENG Zhijun, JI Dong, LI Guixian. Research progress and prospect of platinum-based catalysts for electrocatalytic methanol oxidation[J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3443-3456.
李红伟, 许涵侨, 赵燕, 刘耀宗, 滕志君, 季东, 李贵贤. 铂基催化剂电催化甲醇氧化研究进展与展望[J]. 化工进展, 2025, 44(6): 3443-3456.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0689
| 催化剂 | 测试条件 | 抗毒性 |
|---|---|---|
| Pt/graphene[ | 0.5mol/L H2SO4+1mol/L CH3OH | If∶Ib=0.83 |
| PtRu/N-CNT[ | 0.5mol/L H2SO4+1mol/L CH3OH | If∶Ib=0.92 |
| Pt@PdS2-MWCNT[ | 0.5mol/L H2SO4+1mol/L CH3OH | If∶Ib=0.94 |
| PtCo/CNT[ | 1mol/L H2SO4+2mol/L CH3OH | If∶Ib=1.29 |
| Pt/ITO[ | 0.1mol/L KOH+1mol/L CH3OH | If∶Ib=1.42 |
| PtAg[ | 0.5mol/L H2SO4+1mol/L CH3OH | If∶Ib=1.42 |
| Pt/N-CNT[ | 0.5mol/L H2SO4+1mol/L CH3OH | If∶Ib=1.15 |
| Pt/MoWC/rGO[ | 0.1mol/L HClO4+1mol/L CH3OH | If∶Ib=1.52 |
| PtRuCo@PtRu[ | 0.5mol/L H2SO4+1mol/L CH3OH | If∶Ib=1.63 |
| Sn/Pt3Mn CNC[ | 0.5mol/L H2SO4+2mol/L CH3OH | If∶Ib=1.70 |
| PtAu/rGO[ | 0.5mol/L H2SO4+1mol/L CH3OH | If∶Ib=2.20 |
| Pt3Rh NC[ | 0.5mol/L H2SO4+1mol/L CH3OH | If∶Ib=2.61 |
| PtRu/NiFe-LDHs-CB[ | 0.5mol/L H2SO4+1mol/L CH3OH | If∶Ib=3.06 |
| Pt3Co/N-CNT[ | 0.5mol/L H2SO4+1mol/L CH3OH | If∶Ib=3.30 |
| PtRu/MC[ | 0.5mol/L H2SO4+1mol/L CH3OH | If∶Ib=3.30 |
| 催化剂 | 测试条件 | 抗毒性 |
|---|---|---|
| Pt/graphene[ | 0.5mol/L H2SO4+1mol/L CH3OH | If∶Ib=0.83 |
| PtRu/N-CNT[ | 0.5mol/L H2SO4+1mol/L CH3OH | If∶Ib=0.92 |
| Pt@PdS2-MWCNT[ | 0.5mol/L H2SO4+1mol/L CH3OH | If∶Ib=0.94 |
| PtCo/CNT[ | 1mol/L H2SO4+2mol/L CH3OH | If∶Ib=1.29 |
| Pt/ITO[ | 0.1mol/L KOH+1mol/L CH3OH | If∶Ib=1.42 |
| PtAg[ | 0.5mol/L H2SO4+1mol/L CH3OH | If∶Ib=1.42 |
| Pt/N-CNT[ | 0.5mol/L H2SO4+1mol/L CH3OH | If∶Ib=1.15 |
| Pt/MoWC/rGO[ | 0.1mol/L HClO4+1mol/L CH3OH | If∶Ib=1.52 |
| PtRuCo@PtRu[ | 0.5mol/L H2SO4+1mol/L CH3OH | If∶Ib=1.63 |
| Sn/Pt3Mn CNC[ | 0.5mol/L H2SO4+2mol/L CH3OH | If∶Ib=1.70 |
| PtAu/rGO[ | 0.5mol/L H2SO4+1mol/L CH3OH | If∶Ib=2.20 |
| Pt3Rh NC[ | 0.5mol/L H2SO4+1mol/L CH3OH | If∶Ib=2.61 |
| PtRu/NiFe-LDHs-CB[ | 0.5mol/L H2SO4+1mol/L CH3OH | If∶Ib=3.06 |
| Pt3Co/N-CNT[ | 0.5mol/L H2SO4+1mol/L CH3OH | If∶Ib=3.30 |
| PtRu/MC[ | 0.5mol/L H2SO4+1mol/L CH3OH | If∶Ib=3.30 |
| 制备方法 | 催化剂 | 平均颗粒大小/nm |
|---|---|---|
| 湿化学法 | PtCo/CNT[ | 2.8 |
| 湿化学法 | Pt/ITO[ | 10 |
| 湿化学法 | Pt/MoWC/rGO[ | 3.9 |
| 电化学沉积法 | ITO/Au NPs/Pt NPs[ | 4.5 |
| 电化学沉积法 | PtNi@p-EBB/MWNT/GC[ | 8.5 |
| 电化学沉积法 | PtRu/carbon paper[ | 52.9±9.2 |
| 气相沉积法 | Pt/TNT[ | 4.6 |
| 气相沉积法 | CoFe@NCNT/CFC[ | 120 |
| 气相沉积法 | CF_PtAu[ | 10~15 |
| 制备方法 | 催化剂 | 平均颗粒大小/nm |
|---|---|---|
| 湿化学法 | PtCo/CNT[ | 2.8 |
| 湿化学法 | Pt/ITO[ | 10 |
| 湿化学法 | Pt/MoWC/rGO[ | 3.9 |
| 电化学沉积法 | ITO/Au NPs/Pt NPs[ | 4.5 |
| 电化学沉积法 | PtNi@p-EBB/MWNT/GC[ | 8.5 |
| 电化学沉积法 | PtRu/carbon paper[ | 52.9±9.2 |
| 气相沉积法 | Pt/TNT[ | 4.6 |
| 气相沉积法 | CoFe@NCNT/CFC[ | 120 |
| 气相沉积法 | CF_PtAu[ | 10~15 |
| [1] | DENHOLM Paul, HAND Maureen. Grid flexibility and storage required to achieve very high penetration of variable renewable electricity[J]. Energy Policy, 2011, 39(3): 1817-1830. |
| [2] | ANGIKATH Fabiyan, ABDULRAHMAN Faseeh, YOUSRY Ahmed, et al. Technoeconomic assessment of hydrogen production from natural gas pyrolysis in molten bubble column reactors[J]. International Journal of Hydrogen Energy, 2024, 49: 246-262. |
| [3] | LIU Xianrong, WANG Kunjie, LI Yongcheng, et al. Ultrafine Pt nanoparticles embedded in defective porous carbon for efficient hydrogen evolution reaction[J]. Journal of Alloys and Compounds, 2023, 968: 171970. |
| [4] | LAO Xianzhuo, LI Ze, YANG Likang, et al. Monodispersed ultrathin twisty PdBi alloys nanowires assemblies with tensile strain enhance C2+ alcohols electrooxidation[J]. Journal of Energy Chemistry, 2023, 79: 279-290. |
| [5] | LU Qingqing, ZHAO Xinlu, LUQUE Rafael, et al. Structure-activity relationship of tri-metallic Pt-based nanocatalysts for methanol oxidation reaction[J]. Coordination Chemistry Reviews, 2023, 493: 215280. |
| [6] | DE SOUZA Marciélli Karoline Rodrigues, DOS SANTOS FREITAS CARDOSO Eduardo, FORTUNATO Guilherme V, et al. Combination of Cu-Pt-Pd nanoparticles supported on graphene nanoribbons decorating the surface of TiO2 nanotube applied for CO2 photoelectrochemical reduction[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105803. |
| [7] | ZHOU Qian, CHEN Meida, WANG Bin, et al. Electronic structure engineering of Pt3Co nanoparticles via B,N co-doping of the carbon support boosts electrocatalytic methanol oxidation[J]. Fuel, 2024, 360: 130560. |
| [8] | WANG Guoliang, LEI Linfeng, JIANG Jingjing, et al. An ordered structured cathode based on vertically aligned Pt nanotubes for ultra-low Pt loading passive direct methanol fuel cells[J]. Electrochimica Acta, 2017, 252: 541-548. |
| [9] | RAMLI Zatil Amali Che, SHAARI Norazuwana, SAHARUDDIN Tengku Shafazila Tengku. Progress and major BARRIERS of nanocatalyst development in direct methanol fuel cell: A review[J]. International Journal of Hydrogen Energy, 2022, 47(52): 22114-22146. |
| [10] | XIA Zhangxun, ZHANG Xiaoming, SUN Hai, et al. Recent advances in multi-scale design and construction of materials for direct methanol fuel cells[J]. Nano Energy, 2019, 65: 104048. |
| [11] | YU Yunqi, HE Jianting, WANG Tong, et al. One-step production of Pt-CeO2/N-CNTs electrocatalysts with high catalytic performance toward methanol oxidation[J]. International Journal of Hydrogen Energy, 2023, 48(76): 29565-29582. |
| [12] | YOU Eunyoung, Rolando GUZMÁN-BLAS, NICOLAU Eduardo, et al. Co-deposition of Pt and ceria anode catalyst in supercritical carbon dioxide for direct methanol fuel cell applications[J]. Electrochimica Acta, 2012, 75: 191-200. |
| [13] | LI Ping, WANG Rujie, YAN Fei. Effect of Pr addition into Ni based anode on direct methanol fueled solid oxide fuel cell[J]. Journal of Electroanalytical Chemistry, 2020, 859: 113846. |
| [14] | SHI Zhiwei, PENG Qingguo, WANG Hao, et al. Catalyst, reactor, reaction mechanism and CO remove technology in methanol steam reforming for hydrogen production: A review[J]. Fuel Processing Technology, 2023, 252: 108000. |
| [15] | SINGH Monika, SHARMA Hari Mohan, KAUR Jasvinder, et al. Engineering of electrocatalysts for methanol oxidation reaction: Recent advances and future challenges[J]. Molecular Catalysis, 2024, 557: 113982. |
| [16] | JANIK Michael J, NEUROCK Matthew. A first principles analysis of the electro-oxidation of CO over Pt(111)[J]. Electrochimica Acta, 2007, 52(18): 5517-5528. |
| [17] | QIAO Wei, HUANG Xingyu, FENG Ligang. Advances of PtRu-based electrocatalysts for methanol oxidation[J]. Chinese Journal of Structural Chemistry, 2022, 41(7): 2207016-2207034. |
| [18] | DIN Muhammad Aizaz UD, IDREES Muhammad, JAMIL Sidra, et al. Advances and challenges of methanol-tolerant oxygen reduction reaction electrocatalysts for the direct methanol fuel cell[J]. Journal of Energy Chemistry, 2023, 77: 499-513. |
| [19] | HUANG Helai, SUN Mingze, LI Mei, et al. Recent advances in single-atom catalysts for electrocatalytic synthesis of hydrogen peroxide[J]. Green Energy and Resources, 2023, 1(3): 100031. |
| [20] | PAN Cheng, Sherif EL-KHODARY, WANG Shuang, et al. Research progress in graphene based single atom catalysts in recent years[J]. Fuel Processing Technology, 2023, 250: 107879. |
| [21] | LI Yuxin, LI Zekun, WANG Zhao. Platinum Single-Atom catalysts confined in NH2-UIO-66 for highly selective oxygen reduction reaction[J]. Materials Letters, 2023, 352: 135179. |
| [22] | YE Junqing, YAN Jipeng, PENG Yunlei, et al. Metal-organic framework-based single-atom catalysts for efficient electrocatalytic CO2 reduction reactions[J]. Catalysis Today, 2023, 410: 68-84. |
| [23] | LIU Xiaotian, HUANG Congcong, WAQAS Muhammad, et al. Controllable design of N-doped carbon nanotubes with assembled Pt nanoparticles for methanol oxidation reaction[J]. Molecular Catalysis, 2023, 551: 113612. |
| [24] | LI Xinyu, CHEN Zemin, YANG Yi, et al. Highly stable and efficient Pt single-atom catalyst for reversible proton-conducting solid oxide cells[J]. Applied Catalysis B: Environmental, 2022, 316: 121627. |
| [25] | LI Yanru, LI Hongwei, ZHAO Yan, et al. Insights on the roles of nitrogen configuration in enhancing the performance of electrocatalytic methanol oxidation over Pt Nanoparticles[J]. Small, 2023, 19(46): 2303065. |
| [26] | LI Suwen, ZHANG Yu, HAN Yuanxia, et al. Bimetallic molybdenum-tungsten carbide/reduced graphene oxide hybrid promoted Pt catalyst with enhanced electrocatalytic activity and stability for direct methanol fuel cells[J]. Applied Surface Science, 2022, 600: 154134. |
| [27] | ZHENG Yingping, ZHANG Zhengying, ZHANG Xin, et al. Application of Pt-Co nanoparticles supported on CeO2-C as electrocatalyst for direct methanol fuel cell[J]. Materials Letters, 2018, 221: 301-304. |
| [28] | LI Yanru, LI Hongwei, LI Guixian, et al. Low-temperature N-anchored ordered Pt3Co intermetallic nanoparticles as electrocatalysts for methanol oxidation reaction[J]. Nanoscale, 2022, 14(38): 14199-14211. |
| [29] | LIU Anmin, YANG Yanan, SHI Dongjie, et al. Theoretical study of the mechanism of methanol oxidation on PtNi catalyst[J]. Inorganic Chemistry Communications, 2021, 123: 108362. |
| [30] | SUN Haochen, RAO Peng, DENG Peilin, et al. Three-dimensional porous PtCu as highly efficient electrocatalysts for methanol oxidation reaction[J]. International Journal of Hydrogen Energy, 2022, 47(84): 35701-35708. |
| [31] | 李瑞松, 刘亚琳, 田浩, 等. 燃料电池中铂基电催化剂的设计与合成[J]. 化工进展, 2021, 40(9): 4931-4947. |
| LI Ruisong, LIU Yalin, TIAN Hao, et al. Design and preparation of platinum-based electrocatalysts for fuel cells[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4931-4947. | |
| [32] | PENG Kai, ZHANG Weiqi, BHUVANENDRAN Narayanamoorthy, et al. Pt-based (Zn, Cu) nanodendrites with enhanced catalytic efficiency and durability toward methanol electro-oxidation via trace Ir-doping engineering[J]. Journal of Colloid and Interface Science, 2021, 598: 126-135. |
| [33] | BELLO M, S M Javaid ZAIDI, Amir AL-AHMED,et al. Pt-Ru nanoparticles functionalized mesoporous carbon nitride with tunable pore diameters for DMFC applications[J]. Microporous and Mesoporous Materials, 2017, 252: 50-58. |
| [34] | Viktor JOHÁNEK, OSTROVERKH Anna, FIALA Roman. Vapor-feed low temperature direct methanol fuel cell with Pt and PtRu electrodes: Chemistry insight[J]. Renewable Energy, 2019, 138: 409-415. |
| [35] | KARIMI Fatemeh, AKIN Merve, BAYAT Ramazan, et al. Application of quasihexagonal Pt@PdS2-MWCNT catalyst with High electrochemical performance for electro-oxidation of methanol, 2-propanol, and glycerol alcohols gor guel cells[J]. Molecular Catalysis, 2023, 536(22): 112874. |
| [36] | SHI Huixian, LIAO Fan, ZHU Wenxiang, et al. Effective PtAu nanowire network catalysts with ultralow Pt content for formic acid oxidation and methanol oxidation[J]. International Journal of Hydrogen Energy, 2020, 45(32): 16071-16079. |
| [37] | Vishwakshan REDDY G, Chandra SEKHAR Y, RAGHAVENDRA P, et al. Controlled synthesis of reduced graphene oxide-supported bimetallic Pt-Au nanoparticles for enhanced electrooxidation of methanol[J]. Solid State Sciences, 2024, 149: 107469. |
| [38] | Kamel EID. Rapid one-step aqueous synthesis of porous PtAg wavy nanochains for methanol electrooxidation with a high CO-tolerance[J]. Journal of Electroanalytical Chemistry, 2024, 961: 118207. |
| [39] | LI Yongjie, GAO Wei, Lijie CI, et al. Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation[J]. Carbon, 2010, 48(4): 1124-1130. |
| [40] | FOROOTAN FARD Habib, KHODAVERDI Mohammadmahdi, POURFAYAZ Fathollah, et al. Application of N-doped carbon nanotube-supported Pt-Ru as electrocatalyst layer in passive direct methanol fuel cell[J]. International Journal of Hydrogen Energy, 2020, 45(46): 25307-25316. |
| [41] | HUANG Huajie, FAN Ye, WANG Xin. Low-defect multi-walled carbon nanotubes supported PtCo alloy nanoparticles with remarkable performance for electrooxidation of methanol[J]. Electrochimica Acta, 2012, 80: 118-125. |
| [42] | Van Thi Thanh HO, PHAM Hau Quoc, Thy Ho Thi ANH, et al. Highly stable Pt/ITO catalyst as a promising electrocatalyst for direct methanol fuel cells[J]. Comptes Rendus Chimie, 2019, 22(11/12): 838-843. |
| [43] | LI Zhaohong, KE Shiyu, ZHENG Xingqun, et al. Modulating d-orbital electronic configuration of PtRu via charge donation from co-enriched core boosts methanol electrooxidation[J]. Chemical Engineering Journal, 2024, 493: 152544. |
| [44] | LI Yunrui, WANG Yao, LI Shuna, et al. Pt3Mn alloy nanostructure with high-index facets by Sn doping modified for highly catalytic active electro-oxidation reactions[J]. Journal of Catalysis, 2021, 395: 282-292. |
| [45] | NARAYANAMOORTHY Bhuvanendran, DATTA Kasibhatta Kumara Ramanatha, ESWARAMOORTHY Muthusamy, et al. Highly active and stable Pt3Rh nanoclusters as supportless electrocatalyst for methanol oxidation in direct methanol fuel cells[J]. ACS Catalysis, 2014, 4(10): 3621-3629. |
| [46] | JIN Linbo, MENG Qingcheng, MA Mengze, et al. Stable and active methanol oxidation via anchored PtRu alloy nanoparticles on NiFe layered double hydroxides[J]. Green Chemistry, 2024, 26(6): 3221-3228. |
| [47] | MAIYALAGAN T, ALAJE Taiwo O, SCOTT Keith. Highly stable Pt-Ru nanoparticles supported on three-dimensional cubic ordered mesoporous carbon (Pt-Ru/CMK-8) as promising electrocatalysts for methanol oxidation[J]. The Journal of Physical Chemistry C, 2012, 116(3): 2630-2638. |
| [48] | WANG Hongfei, ZHANG Kefu, QIU Jun, et al. Ternary PtFeCo alloys on graphene with high electrocatalytic activities for methanol oxidation[J]. Nanoscale, 2020, 12(17): 9824-9832. |
| [49] | WANG Zining, HUO Shuhui, ZHOU Pengxin. Rich-grain-boundary PtRuNi with network structure as efficient catalysts for methanol oxidation reaction[J]. International Journal of Electrochemical Science, 2019, 14(11): 10576-10581. |
| [50] | REN Yujing, ASKAROV Shokhrukhbek, ZHANG Yaoyuan, et al. Nanoarchitectonics for modulation on the electronic structure of ultrafine PtRuFe nanowires as robust methanol electrooxidation catalysts[J]. Journal of Alloys and Compounds, 2024, 978: 173442. |
| [51] | WANG Yanyun, ZHAO Xiwang, DENG Qinghua, et al. Controllable synthesis of efficient Ru-doped PtSn alloy nanoplate electrocatalysts for methanol oxidation reaction[J]. International Journal of Hydrogen Energy, 2022, 47(75): 32158-32166. |
| [52] | REN Yangyang, ZANG Zehao, Chenhao LYU, et al. Structurally-supported PtCuCo nanoframes as efficient bifunctional catalysts for oxygen reduction and methanol oxidation reactions[J]. Journal of Colloid and Interface Science, 2023, 640: 801-808. |
| [53] | WANG Jingwei, YAN Hongliang, LI Xinxue. Fabrication of PtCuCo double-layered rhombic dodecahedral nanoframes for efficient methanol electrooxidation catalysis[J]. Journal of Alloys and Compounds, 2022, 914: 165374. |
| [54] | PENG Kai, BHUVANENDRAN Narayanamoorthy, RAVICHANDRAN Sabarinathan, et al. Carbon supported PtPdCr ternary alloy nanoparticles with enhanced electrocatalytic activity and durability for methanol oxidation reaction[J]. International Journal of Hydrogen Energy, 2020, 45(43): 22752-22760. |
| [55] | ANANDAN Dhivyaa, KUMAR Amit, JAISWAL Amit Kumar. Comparative study of hydroxyapatite synthesized using Schiff base and wet chemical precipitation methods[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 148: 106200. |
| [56] | HUANG Huajie, QIN Jinlong, LIU Chen, et al. Constructing Zn-based MOF-MXene nanoarchitectures to stabilize ultrafine Pt nanocrystals with enhanced methanol oxidation performance[J]. Carbon, 2024, 226: 119171. |
| [57] | WANG Xiaoqu, QI Jiuhui, LUO Xinji, et al. Core-shell Au@PtIr nanowires with dendritic alloy shells as efficient bifunctional catalysts toward methanol oxidation and hydrogen evolution reactions[J]. International Journal of Hydrogen Energy, 2021, 46(74): 36771-36780. |
| [58] | LIU Jing, YIN Jiao, FENG Bo, et al. One-pot synthesis of unprotected PtPd nanoclusters with enhanced catalytic activity, durability, and methanol-tolerance for oxygen reduction reaction[J]. Applied Surface Science, 2019, 473: 318-325. |
| [59] | MA Chun’an, KANG Lingzhi, SHI Meiqin, et al. Preparation of Pt-mesoporous tungsten carbide/carbon composites via a soft-template method for electrochemical methanol oxidation[J]. Journal of Alloys and Compounds, 2014, 588: 481-487. |
| [60] | Yeongdong MUN, KIM Min Jeong, PARK Shin-Ae, et al. Soft-template synthesis of mesoporous non-precious metal catalyst with Fe-N x /C active sites for oxygen reduction reaction in fuel cells[J]. Applied Catalysis B: Environmental, 2018, 222: 191-199. |
| [61] | YUE Xiaoyu, PU Yuguang, ZHANG Wen, et al. Ultrafine Pt nanoparticles supported on double-shelled C/TiO2 hollow spheres material as highly efficient methanol oxidation catalysts[J]. Journal of Energy Chemistry, 2020, 49(1): 275-282. |
| [62] | Sang Hyun AHN, CHOI Insoo, KWON Oh Joong, et al. One-step co-electrodeposition of Pt-Ru electrocatalysts on carbon paper for direct methanol fuel cell[J]. Chemical Engineering Journal, 2012, 181: 276-280. |
| [63] | LI Chao, DAI Ruihui, QI Ruifang, et al. Electrodeposition of Pt-Ru alloy electrocatalysts for direct methanol fuel cell[J]. International Journal of Electrochemical Science, 2017, 12(3): 2485-2494. |
| [64] | ZHOU Wenchang, YAN Ruiwen, ZHOU Sijie. Synthesis of highly efficient Cu-PtRu ternary metal catalyst for methanol oxidation[J]. Surfaces and Interfaces, 2023, 40: 103131. |
| [65] | SHEN Hailin, WANG Min, ZHANG Wei, et al. The bimetallic heterostructure Pt-Au nanoparticle array on Indium Tin Oxide electrode by electrodeposition and their high activity for the electrochemical oxidation of methanol[J]. Journal of Alloys and Compounds, 2022, 895: 162581. |
| [66] | ZHANG Chunxiu, CHAO Long, WANG Linping, et al. Preparation of a Pt thin-film modified electrode for alkaline electrocatalytic oxidation of methanol by Cu(OH)2 electrodeposition and galvanic replacement reaction[J]. Electrochimica Acta, 2020, 330: 135234. |
| [67] | AZIZI Javad, KAMYABI Mohammad ALI. Pulse-electrodeposition of PtNi nanoparticles on a novel substrate of multi-walled carbon nanotubes/poly(eriochrome blue-black B) as an active and durable catalyst for the electrocatalytic oxidation of methanol[J]. Journal of Electroanalytical Chemistry, 2022, 920(36): 116642. |
| [68] | ANITHA V C, ZAZPE Raul, KRBAL Milos, et al. Anodic TiO2 nanotubes decorated by Pt nanoparticles using ALD: An efficient electrocatalyst for methanol oxidation[J]. Journal of Catalysis, 2018, 365: 86-93. |
| [69] | WANG Wenjie, JIANG Zhongqing, TIAN Xiaoning, et al. Self-standing CoFe embedded nitrogen-doped carbon nanotubes with Pt deposition through direct current plasma magnetron sputtering for direct methanol fuel cells applications[J]. Carbon, 2023, 201: 1068-1080. |
| [70] | KUBIAK Adam, ROZMANOWSKI Tomasz, FRANKOWSKI Marcin, et al. Led-induced deposition of Pt and Au NPs on carbon fibers: Developing a novel strategy for facile fabrication of electrocatalysts for enhanced methanol electrooxidation[J]. Chemical Engineering Journal, 2024, 493: 152546. |
| [71] | HE Cheng, WANG Xiaofeng, SANKARASUBRAMANIAN Shrihari, et al. Highly durable and active Pt/Sb-doped SnO2 oxygen reduction reaction electrocatalysts produced by atomic layer deposition[J]. ACS Applied Energy Materials, 2020, 3(6): 5774-5783. |
| [72] | RAZA A, FARID A, RASHEED A, et al. Home-made chemical vapor deposition-based synthesis of binder-free nanostructured magnesium-molybdenum-sulfide electrode materials for supercapacitor application[J]. Journal of Physics and Chemistry of Solids, 2024, 192: 112093. |
| [73] | RAZA A, FARID A, RASHEED A, et al. Synthesis of binder-free and highly conducting MoS2 sphere like electrode material for supercapacitor application[J]. Physica B: Condensed Matter, 2024, 685: 415982. |
| [74] | O’NEILL Brandon J, JACKSON David H K, LEE Jechan, et al. Catalyst design with atomic layer deposition[J]. ACS Catalysis, 2015, 5(3): 1804-1825. |
| [75] | REDNYK A, JOHÁNEK V, KHALAKHAN I, et al. Methanol oxidation on sputter-coated platinum oxide catalysts[J]. International Journal of Hydrogen Energy, 2016, 41(1): 265-275. |
| [1] | KONG Can, LIU Yuhan, SHENG Yu, LIU Fang, CHANG Huazhen. Polyaniline enhanced cuprous oxide for carbon dioxide reduction [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3144-3153. |
| [2] | FAN Xiaoya, ZHAO Zhen, PENG Qiang. Review on electrocatalytic co-reduction of carbon dioxide and nitrate for urea synthesis [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2856-2869. |
| [3] | BAO Jie, YU Panjie, MA Yongde, ZHANG Hongwei, CAI Zhenping, CAO Yanning, HUANG Kuan, JIANG Lilong. Design of Cu-ZrO2 catalyst and its utilization in hydrogenation of methyl palmitate to fatty alcohols [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2997-3008. |
| [4] | ZHANG Shuxi, CHEN Peiting, PU Jianbo, WANG Yuzuo, RUAN Dianbo, QIAO Zhijun. Effect of air inlet on secondary particle size and electrochemical properties of silicon/carbon anode materials [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2196-2201. |
| [5] | ZHANG Xin’er, PEI Liujun, ZHOU Yudie, JIN Kaili, WANG Jiping. Progress of TiO2-based photocatalysts for hydrogen production by water splitting with solar energy [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1298-1308. |
| [6] | LIU Junjie, WU Jianmin, SUN Qiwen, WANG Jiancheng, SUN Yan. Research of metallocene catalysts for linear α-olefins polymerization to obtain high molecular weight products [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1309-1322. |
| [7] | ZHU Guoyu, GE Qi, FU Mingli. Durability testing and life prediction of methanol reforming catalysts for hydrogen production [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1338-1346. |
| [8] | XIE Xinyao, WAN Fen, FU Xuanyu, FAN Yuting, CHEN Lingxiu, LI Peng. Catalytic performance and mechanism of CO2 electroreduction of Cu-Ag nanoclusters [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1387-1395. |
| [9] | JIN Yuyang, NIU Chuanfeng, LIU Yingshuo, DING Shi. Graphite powder/Nafion-Pb electrode for electrocatalytic reduction of oxalic acid to glycolic acid [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1003-1013. |
| [10] | ZHANG Xiaofang, GAN Wen, JI Zhijiao, XU Ming, LI Chufu, HE Guangli. Present situation and strategy of electrolytes for electrochemical nitrogen reduction to ammonia [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 809-819. |
| [11] | HONG Siqi, GU Fangwei, ZHENG Jinyu. Development status and prospect of low iridium catalysts for hydrogen production by PEM electrolysis [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 158-168. |
| [12] | QIN Tingting, NIU Qiang. Research progress on Fe-based catalysts for CO2 hydrogenation to higher alcohols [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 253-265. |
| [13] | LI Jiayou, ZHANG Yuhan, JIANG Nan, JIANG Bolong. Preparation of transition metal sulfide NiS(x)@NFcatalyst by hydrothermal method and its hydrogen evolution performance [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 297-304. |
| [14] | HE Ran, LIANG Hong, HUANG Hong, YANG Youli, ZHENG Qiang, LI Xi. Preparation of acetylene black/Fe3O4 catalysed cathodic electrode and removal of 2,4,6-trichlorophenol by electro-Fenton oxidation [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 572-582. |
| [15] | LIN Meijie, MI Shuodong, BAO Cheng. Research progress of H2 and CO electrochemical oxidation mechanisms in metal and doped ceria system [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 209-224. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |