Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (6): 3051-3060.DOI: 10.16085/j.issn.1000-6613.2023-0843
• Industrial catalysis • Previous Articles
CHEN Fuqiang(), ZHONG Zhaoping(), QI Renzhi
Received:
2023-05-22
Revised:
2023-09-12
Online:
2024-07-02
Published:
2024-06-15
Contact:
ZHONG Zhaoping
通讯作者:
仲兆平
作者简介:
陈富强(1999—),男,硕士研究生,研究方向为铜基电催化二氧化碳还原。E-mail:220210560@seu.edu.cn。
基金资助:
CLC Number:
CHEN Fuqiang, ZHONG Zhaoping, QI Renzhi. Research progress on copper-based catalysts for electrochemical reduction of carbon dioxide to formic acid[J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3051-3060.
陈富强, 仲兆平, 戚仁志. 铜基催化剂电还原二氧化碳为甲酸研究进展[J]. 化工进展, 2024, 43(6): 3051-3060.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0843
催化剂 | 策略 | 电流密度/mA·cm-2 | 参考文献 | |
---|---|---|---|---|
多孔树枝Cu | 形貌调整 | 87 | 6.5 | [ |
三维核壳Cu@Sn | 形貌调整 | 100 | 16.52 | [ |
中空纤维Cu | 形貌调整 | 77.1 | 34.7 | [ |
Pd5Cu1 | 合金化 | 64 | — | [ |
CdCu@Cu | 合金化 | 70.5 | 30.5 | [ |
Sn-Cu | 合金化 | 84.4 | 79 | [ |
Pb1Cu | 合金化 | 96 | 1000 | [ |
Cu2S/Cu | 硫掺杂 | 85 | 5.3 | [ |
超薄多孔Cu-S NFs | 硫掺杂 | 89.8 | 404.1 | [ |
磷酸盐调控Cu | 磷掺杂 | 79 | — | [ |
Cu2O(111) | 晶面暴露 | 90 | — | [ |
Cu2O (100) | 晶面暴露 | 90 | 260 | [ |
Cu@NC | 氮掺杂碳材料 | 41 | — | [ |
Cu2S/ NDg-C3N4 | 含氮缺陷的石墨相氮化碳 | 82.3 | 5.24 | [ |
Cu-CDots | 碳点载体 | 79 | — | [ |
催化剂 | 策略 | 电流密度/mA·cm-2 | 参考文献 | |
---|---|---|---|---|
多孔树枝Cu | 形貌调整 | 87 | 6.5 | [ |
三维核壳Cu@Sn | 形貌调整 | 100 | 16.52 | [ |
中空纤维Cu | 形貌调整 | 77.1 | 34.7 | [ |
Pd5Cu1 | 合金化 | 64 | — | [ |
CdCu@Cu | 合金化 | 70.5 | 30.5 | [ |
Sn-Cu | 合金化 | 84.4 | 79 | [ |
Pb1Cu | 合金化 | 96 | 1000 | [ |
Cu2S/Cu | 硫掺杂 | 85 | 5.3 | [ |
超薄多孔Cu-S NFs | 硫掺杂 | 89.8 | 404.1 | [ |
磷酸盐调控Cu | 磷掺杂 | 79 | — | [ |
Cu2O(111) | 晶面暴露 | 90 | — | [ |
Cu2O (100) | 晶面暴露 | 90 | 260 | [ |
Cu@NC | 氮掺杂碳材料 | 41 | — | [ |
Cu2S/ NDg-C3N4 | 含氮缺陷的石墨相氮化碳 | 82.3 | 5.24 | [ |
Cu-CDots | 碳点载体 | 79 | — | [ |
1 | WEI Jian, YAO Ruwei, HAN Yu, et al. Towards the development of the emerging process of CO2 heterogenous hydrogenation into high-value unsaturated heavy hydrocarbons[J]. Chemical Society Reviews, 2021, 50(19): 10764-10805. |
2 | YAASHIKAA P R, SENTHIL KUMAR P, VARJANI Sunita J, et al. A review on photochemical, biochemical and electrochemical transformation of CO2 into value-added products[J]. Journal of CO2 Utilization, 2019, 33: 131-147. |
3 | DUARAH Prangan, HALDAR Dibyajyoti, YADAV VSK, et al. Progress in the electrochemical reduction of CO2 to formic acid: A review on current trends and future prospects[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106394. |
4 | 张轩, 黄耀桢, 邵秀丽, 等. 结构化铜基催化剂电化学还原CO2为多碳产物研究进展[J]. 化工进展, 2021, 40(7): 3736-3746. |
ZHANG Xuan, HUANG Yaozhen, SHAO Xiuli, et al. Recent progress in structured Cu-based catalysts for electrochemical CO2 reduction to C2+ products[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3736-3746. | |
5 | 李喆, 李泽洋, 杨宇森, 等. 电化学二氧化碳还原制甲酸催化剂的研究进展[J]. 化工进展, 2023, 42(1): 53-66. |
LI Zhe, LI Zeyang, YANG Yusen, et al. Research progress on catalysts for electrocatalytic reduction of carbon dioxide to formic acid[J]. Chemical Industry and Engineering Progress, 2023, 42(1): 53-66. | |
6 | WU Yahui, CHEN Chunjun, YAN Xupeng, et al. Enhancing CO2 electroreduction to CH4 over Cu nanoparticles supported on N-doped carbon[J]. Chemical Science, 2022, 13(28): 8388-8394. |
7 | RASUL Shahid, ANJUM Dalaver H, JEDIDI Abdesslem, et al. A highly selective copper-indium bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2 to CO[J]. Angewandte Chemie International Edition, 2015, 54(7): 2146-2150. |
8 | Yeongdong MUN, LEE Seunghyun, CHO Ara, et al. Cu-Pd alloy nanoparticles as highly selective catalysts for efficient electrochemical reduction of CO2 to CO[J]. Applied Catalysis B: Environmental, 2019, 246: 82-88. |
9 | ZHANG Qiang, YUE Ruirui, JIANG Fengxing, et al. Au as an efficient promoter for electrocatalytic oxidation of formic acid and carbon monoxide: A comparison between Pt-on-Au and PtAu alloy catalysts[J]. Gold Bulletin, 2013, 46(3): 175-184. |
10 | Sally Fae HO, Adriana MENDOZA-GARCIA, GUO Shaojun, et al. A facile route to monodisperse MPd (M = Co or Cu) alloy nanoparticles and their catalysis for electrooxidation of formic acid[J]. Nanoscale, 2014, 6(12): 6970-6973. |
11 | LI Sirui, ZUO Yu, TANG Yuming, et al. The electroplated Pd-Co alloy film on 316L stainless steel and the corrosion resistance in boiling acetic acid and formic acid mixture with stirring[J]. Applied Surface Science, 2014, 321: 179-187. |
12 | Elías MARDONES-HERRERA, Carmen CASTRO-CASTILLO, NANDA Kamala Kanta, et al. Reduced graphene oxide overlayer on copper nanocube electrodes steers the selectivity towards ethanol in electrochemical reduction of carbon dioxide[J]. ChemElectroChem, 2022, 9(10): e202200259. |
13 | BAEK Yeji, SONG Hakhyeon, HONG Deokgi, et al. Electrochemical carbon dioxide reduction on copper-zinc alloys: Ethanol and ethylene selectivity analysis[J]. Journal of Materials Chemistry A, 2022, 10(17): 9393-9401. |
14 | XIANG Kaisong, LIU Yucheng, LI Chaofang, et al. Microenvironmental feeding and stabilization of C2H4 intermediates by iodide-doped copper nanowire arrays to boost C2H6 formation[J]. Energy & Fuels, 2021, 35(19): 15987-15994. |
15 | SHAN Jingjing, SHI Yaoxuan, LI Huiyi, et al. Effective CO2 electroreduction toward C2H4 boosted by Ce-doped Cu nanoparticles[J]. Chemical Engineering Journal, 2022, 433: 133769. |
16 | LAN Yangchun, NIU Gaoqiang, WANG Fei, et al. SnO2-modified two-dimensional CuO for enhanced electrochemical reduction of CO2 to C2H4 [J]. ACS Applied Materials & Interfaces, 2020, 12(32): 36128-36136. |
17 | BULUSHEV Dmitri A, ROSS Julian R H. Towards sustainable production of formic acid[J]. ChemSusChem, 2018, 11(5): 821-836. |
18 | ZHENG Tingting, LIU Chunxiao, GUO Chenxi, et al. Copper-catalysed exclusive CO2 to pure formic acid conversion via single-atom alloying[J]. Nature Nanotechnology, 2021, 16(12): 1386-1393. |
19 | VENKATA Sai Sriram Mosali, ZHANG Xiaolong, ZHANG Ying, et al. Electrocatalytic CO2 reduction to formate on Cu based surface alloys with enhanced selectivity[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(24): 19453-19462. |
20 | AI Ling, Sue-Faye NG, Wee-Jun ONG. Carbon dioxide electroreduction into formic acid and ethylene: A review[J]. Environmental Chemistry Letters, 2022, 20(6): 3555-3612. |
21 | HUAN Tran Ngoc, SIMON Philippe, ROUSSE Gwenaëlle, et al. Porous dendritic copper: An electrocatalyst for highly selective CO2 reduction to formate in water/ionic liquid electrolyte[J]. Chemical Science, 2017, 8(1): 742-747. |
22 | HOU Xiaofan, CAI Yixiao, ZHANG Dan, et al. 3D core-shell porous-structured Cu@Sn hybrid electrodes with unprecedented selective CO2-into-formate electroreduction achieving 100%[J]. Journal of Materials Chemistry A, 2019, 7(7): 3197-3205. |
23 | LIU Defei, HU Yan, SHOKO Elvis, et al. High selectivity of CO2 conversion to formate by porous copper hollow fiber: Microstructure and pressure effects[J]. Electrochimica Acta, 2021, 365: 137343. |
24 | TAKASHIMA Toshihiro, SUZUKI Tomohiro, IRIE Hiroshi. Electrochemical reduction of carbon dioxide to formate on palladium-copper alloy nanoparticulate electrode[J]. Electrochemistry, 2019, 87(2): 134-138. |
25 | YE Ke, CAO Ang, SHAO Jiaqi, et al. Synergy effects on Sn-Cu alloy catalyst for efficient CO2 electroreduction to formate with high mass activity[J]. Science Bulletin, 2020, 65(9): 711-719. |
26 | ZHU Qinggong, SUN Xiaofu, KANG Xinchen, et al. Cu2S on Cu foam as highly efficient electrocatalyst for reduction of CO2 to formic acid[J]. Acta Physico-Chimica Sinica, 2016, 32(1): 261-266. |
27 | LIU Lixia, LI Xiang, CAI Yanming, et al. Hierarchical S-modified Cu porous nanoflakes for efficient CO2 electroreduction to formate[J]. Nanoscale, 2022, 14(37): 13679-13688. |
28 | ZHAO Jian, SUN Libo, CANEPA Silvia, et al. Phosphate tuned copper electrodeposition and promoted formic acid selectivity for carbon dioxide reduction[J]. Journal of Materials Chemistry A, 2017, 5(23): 11905-11916. |
29 | QIU Yanling, XU Wenbin, YAO Pengfei, et al. Electrochemical production of formic acid from CO2 with cetyltrimethylammonium bromide-assisted copper-based catalysts[J]. ChemSusChem, 2021, 14(8): 1962-1969. |
30 | MA Xintao, ZHANG Yinggan, FAN Tingting, et al. Facet dopant regulation of Cu2O boosts electrocatalytic CO2 reduction to formate[J]. Advanced Functional Materials, 2023, 33(16): 2213145. |
31 | JIANG Chengjie, HOU Yue, LIU Hua, et al. CO2 electrocatalytic reduction on Cu nanoparticles loaded on nitrogen-doped carbon[J]. Journal of Electroanalytical Chemistry, 2022, 915: 116353. |
32 | HU Shengnan, TIAN Na, LI Mengying, et al. Sulfur-modified copper synergy with nitrogen-defect sites for the electroreduction of CO2 to formate at low overpotentials[J]. Electrochimica Acta, 2022, 422: 140557. |
33 | GUO Sijie, ZHAO Siqi, GAO Jin, et al. Cu-CDots nanocorals as electrocatalyst for highly efficient CO2 reduction to formate[J]. Nanoscale, 2017, 9(1): 298-304. |
34 | Weixin LYU, ZHOU Jing, BEI Jingjing, et al. Electrodeposition of tin based film on copper plate for electrocatalytic reduction of carbon dioxide to formate[J]. International Journal of Electrochemical Science, 2016, 11(7): 6183-6191. |
35 | Weixin LYU, ZHOU Jing, KONG Fenying, et al. Porous tin-based film deposited on copper foil for electrochemical reduction of carbon dioxide to formate[J]. International Journal of Hydrogen Energy, 2016, 41(3): 1585-1591. |
36 | CHEN Zhipeng, WANG Nailiang, YAO Shuyu, et al. The flaky Cd film on Cu plate substrate: An active and efficient electrode for electrochemical reduction of CO2 to formate[J]. Journal of CO2 Utilization, 2017, 22: 191-196. |
37 | LI Yinshi, HE Yaling, YANG Weiwei. A high-performance direct formate-peroxide fuel cell with palladium-gold alloy coated foam electrodes[J]. Journal of Power Sources, 2015, 278: 569-573. |
38 | Önder METIN, SUN Xiaolian, SUN Shouheng. Monodisperse gold-palladium alloy nanoparticles and their composition-controlled catalysis in formic acid dehydrogenation under mild conditions[J]. Nanoscale, 2013, 5(3): 910-912. |
39 | JIANG Junhua, KUCERNAK Anthony. Probing anodic reaction kinetics and interfacial mass transport of a direct formic acid fuel cell using a nanostructured palladium-gold alloy microelectrode[J]. Electrochimica Acta, 2009, 54(19): 4545-4551. |
40 | CHEN Guoqin, LI Yunhua, WANG Dong, et al. Carbon-supported PtAu alloy nanoparticle catalysts for enhanced electrocatalytic oxidation of formic acid[J]. Journal of Power Sources, 2011, 196(20): 8323-8330. |
41 | MARCINKOWSKI Matthew D, LIU Jilei, MURPHY Colin J, et al. Selective formic acid dehydrogenation on Pt-Cu single-atom alloys[J]. ACS Catalysis, 2017, 7(1): 413-420. |
42 | ZHAO Xi, DAI Pingwang, XU Dongyan, et al. Ultra\ufb01ne PdAg alloy nanoparticles anchored on NH2-functionalized 2D/2D TiO2 nanosheet/rGO composite as efficient and reusable catalyst for hydrogen release from additive-free formic acid at room temperature Journal of Energy Chemistry[J]. Journal of Energy Chemistry, 2021, 59: 455-464. |
43 | WANG Miao, LIU Shuai, CHEN Bo, et al. Synergistic geometric and electronic effects in Bi-Cu bimetallic catalysts for CO2 electroreduction to formate over a wide potential window[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(17): 5693-5701. |
44 | PHILLIPS Katherine R, KATAYAMA Yu, HWANG Jonathan, et al. Sulfide-derived copper for electrochemical conversion of CO2 to formic acid[J]. The Journal of Physical Chemistry Letters, 2018, 9(15): 4407-4412. |
45 | XIAO Hai, GODDARD William A, CHENG Tao, et al. Cu metal embedded in oxidized matrix catalyst to promote CO2 activation and CO dimerization for electrochemical reduction of CO2 [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(26): 6685-6688. |
46 | LAURSEN Anders B, CALVINHO Karin U D, GOETJEN Timothy A, et al. CO2 electro-reduction on Cu3P: Role of Cu(Ⅰ) oxidation state and surface facet structure in C1-formate production and H2 selectivity[J]. Electrochimica Acta, 2021, 391: 138889. |
47 | CHENG Tao, XIAO Hai, GODDARD William A. Reaction mechanisms for the electrochemical reduction of CO2 to CO and formate on the Cu(100) surface at 298 K from quantum mechanics free energy calculations with explicit water[J]. Journal of the American Chemical Society, 2016, 138(42): 13802-13805. |
48 | Lihui OU, HE Zixi. Potential-dependent competitive electroreduction of CO2 into CO and formate on Cu(111) from an improved H coverage-dependent electrochemical model with explicit solvent effect[J]. ACS Omega, 2020, 5(22): 12735-12744. |
49 | ZHAO Xiuhui, CHEN Qingsong, ZHUO Dehuang, et al. Oxygen vacancies enriched Bi based catalysts for enhancing electrocatalytic CO2 reduction to formate[J]. Electrochimica Acta, 2021, 367: 137478. |
50 | LI Simeng, DUAN Huan, YU Jun, et al. Cu vacancy induced product switching from formate to CO for CO2 reduction on copper sulfide[J]. ACS Catalysis, 2022, 12(15): 9074-9082. |
51 | ZHOU Wenjing, YANG Huimin, GAO Nan, et al. Vacancies and electronic effects enhanced photoelectrochemical activity of Cu-doped Bi2Se3 for efficient CO2 reduction to formate[J]. Journal of Alloys and Compounds, 2022, 903: 163707. |
[1] | LI Haipeng, WU Tong, WANG Qi, GAO Shiwang, WANG Xiaolong, LI Xu, GAO Xinhua, NIAN Pei, WEI Yibin. Effective methanol production by CO2 hydrogenation using water-permeable NaA zeolite membrane [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2834-2842. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | FU Shurong, WANG Lina, WANG Dongwei, LIU Rui, ZHANG Xiaohui, MA Zhanwei. Oxygen evolution cocatalyst enhancing the photoanode performances for photoelectrochemical water splitting [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2353-2370. |
[4] | ZHOU Jiali, MA Ziran, LI Ge, ZHAO Chunlin, WANG Hongyan, WANG Lei. Research progress on anti-poisoning of SCR catalysts in flue gas of coal and renewable fuel co-fired power plant [J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6286-6300. |
[5] | ZHANG Huixia, ZHOU Lishan, ZHANG Chenglei, QIAN Guanglei, XIE Chenxin, ZHU Lingzhi. Preparation of Bi2S3/TiO2 nanocone photoanode and their photoelectrocatalysis degradation of hygromycin [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5548-5557. |
[6] | LI Zhe, LI Zeyang, YANG Yusen, WEI Min. Research progress on catalysts for electrocatalytic reduction of carbon dioxide to formic acid [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 53-66. |
[7] | GUO Feng, ZHANG Shangjie, JIANG Yujia, JIANG Wankui, XIN Fengxue, ZHANG Wenming, JIANG Min. Biotransformation of one-carbon resources by yeast [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 30-39. |
[8] | XUE Lijing, FEI Xing, LIU Jianglin, WU Linjun, QIU Zhongjie, XU Quanzhou, ZHONG Xiaowen, LIN Xuliang, QIN Yanlin. Research progress on the preparation and application of lignin-based carbon catalysts [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2441-2450. |
[9] | HUA Yani, FENG Shaoguang, DANG Xinyue, HAO Wenbin, ZHANG Baowen, GAO Zhan. Research progress of CO2 electrocatalytic reduction to syngas [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1224-1240. |
[10] | GE Rui, HU Xu, DONG Lingyu, LI Dan, HAO Guangping. Electrochemical coupling between cathodic carbon dioxide reduction and anodic oxidation synthesis [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5132-5144. |
[11] | WANG Yimeng, LIU Jianjun, ZUO Shengli, LI Kang. Research progress of active sites of MoS2 photoelectrocatalyst: optimization and performance [J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3747-3759. |
[12] | FAN Wenlong, LI Linzhe, XUE Zhiwei, MENG Xiuxia, ZHANG Jinjin, YU Fangyong, YANG Naitao. Research progress of electrocatalytic ammonia synthesis [J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3005-3019. |
[13] | FU Shurong, ZHANG Qinsheng, LU Jinzhi, MA Zhanwei. Research progress of fabrication of ZnO-based photoanode and photoelectrocatalytic water splitting performances [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1413-1424. |
[14] | Chenxi JIA, Jing’ai SHAO, Xiaowei BAI, Jianjun XIAO, Haiping YANG, Hanping CHEN. Review on Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3658-3668. |
[15] | Ruijun HOU, Rui QIU, Kening SUN. Progress in the Cu-based catalyst supports for methanol synthesis from CO2 [J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2639-2647. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |