Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (6): 3042-3050.DOI: 10.16085/j.issn.1000-6613.2023-0836
• Energy processes and technology • Previous Articles
HE Shikun1(), ZHANG Wenhao1, FENG Junfeng1,2(), PAN Hui1,2
Received:
2023-05-19
Revised:
2023-09-25
Online:
2024-07-02
Published:
2024-06-15
Contact:
FENG Junfeng
通讯作者:
冯君锋
作者简介:
何世坤(1997—),男,硕士研究生,研究方向为生物质催化转化。E-mail:1502125563@qq.com。
基金资助:
CLC Number:
HE Shikun, ZHANG Wenhao, FENG Junfeng, PAN Hui. Directional conversion of lignocellulosic biomass to methyl levulinate over supported metal solid acid[J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3042-3050.
何世坤, 张文豪, 冯君锋, 潘晖. 负载金属型固体酸催化木质纤维生物质定向转化为乙酰丙酸甲酯[J]. 化工进展, 2024, 43(6): 3042-3050.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0836
催化剂 | 比表面积/m2·g-1 | 孔容/cm3·g-1 | 孔径/Å |
---|---|---|---|
A15 | 385.94 | 0.63 | 65.70 |
2%AlCl3-A15 | 37.65 | 0.24 | 106.00 |
4%AlCl3-A15 | 77.60 | 0.36 | 184.22 |
6%AlCl3-A15 | 55.70 | 0.34 | 242.49 |
催化剂 | 比表面积/m2·g-1 | 孔容/cm3·g-1 | 孔径/Å |
---|---|---|---|
A15 | 385.94 | 0.63 | 65.70 |
2%AlCl3-A15 | 37.65 | 0.24 | 106.00 |
4%AlCl3-A15 | 77.60 | 0.36 | 184.22 |
6%AlCl3-A15 | 55.70 | 0.34 | 242.49 |
催化剂 | B酸/mmol·g-1 | L酸/mmol·g-1 | L酸/B酸 |
---|---|---|---|
2%AlCl3-A15 | 0.037 | 0.047 | 1.27 |
4%AlCl3-A15 | 0.058 | 0.068 | 1.17 |
6%AlCl3-A15 | 0.049 | 0.051 | 1.04 |
催化剂 | B酸/mmol·g-1 | L酸/mmol·g-1 | L酸/B酸 |
---|---|---|---|
2%AlCl3-A15 | 0.037 | 0.047 | 1.27 |
4%AlCl3-A15 | 0.058 | 0.068 | 1.17 |
6%AlCl3-A15 | 0.049 | 0.051 | 1.04 |
催化剂 | 原料转化率/% | 糠醛得率/% | 5-羟甲基糠醛得率/% | 糖苷类得率/% | 乙酰丙酸得率/% | 乙酰丙酸甲酯得率/% | 乙酰丙酸/酯得率/% |
---|---|---|---|---|---|---|---|
6%LiCl/乙醇-A15 | 100 | 0.08 | 1.90 | 1.09 | 3.62 | 14.35 | 17.97 |
6%LiCl/水-A15 | 100 | 0.10 | 3.02 | 0.79 | 8.36 | 15.20 | 23.56 |
6%LiCl/甲醇-A15 | 100 | 0.06 | 1.07 | 0.89 | 1.14 | 13.23 | 14.37 |
催化剂 | 原料转化率/% | 糠醛得率/% | 5-羟甲基糠醛得率/% | 糖苷类得率/% | 乙酰丙酸得率/% | 乙酰丙酸甲酯得率/% | 乙酰丙酸/酯得率/% |
---|---|---|---|---|---|---|---|
6%LiCl/乙醇-A15 | 100 | 0.08 | 1.90 | 1.09 | 3.62 | 14.35 | 17.97 |
6%LiCl/水-A15 | 100 | 0.10 | 3.02 | 0.79 | 8.36 | 15.20 | 23.56 |
6%LiCl/甲醇-A15 | 100 | 0.06 | 1.07 | 0.89 | 1.14 | 13.23 | 14.37 |
催化剂 | 原料转化率/% | 糠醛得率/% | 5-羟甲基糠醛得率/% | 糖苷类得率/% | 乙酰丙酸得率/% | 乙酰丙酸甲酯得率/% | 乙酰丙酸/酯得率/% |
---|---|---|---|---|---|---|---|
2%Al(NO3)3-A15 | 99.90 | — | 4.09 | 0.016 | 1.34 | 7.07 | 8.41 |
4%Al(NO3)3-A15 | 99.90 | 0.08 | 2.64 | 0.69 | 3.58 | 13.91 | 17.49 |
6%Al(NO3)3-A15 | 99.90 | 0.07 | 1.85 | 0.43 | 5.95 | 13.47 | 19.42 |
2%AlCl3-A15 | 100 | — | 1.83 | — | 3.61 | 11.84 | 15.45 |
4%AlCl3-A15 | 100 | 0.09 | 1. 88 | 0.76 | 7.36 | 17.59 | 24.96 |
6%AlCl3-A15 | 100 | 0.08 | 1.82 | 0.36 | 5.09 | 18.07 | 23.17 |
催化剂 | 原料转化率/% | 糠醛得率/% | 5-羟甲基糠醛得率/% | 糖苷类得率/% | 乙酰丙酸得率/% | 乙酰丙酸甲酯得率/% | 乙酰丙酸/酯得率/% |
---|---|---|---|---|---|---|---|
2%Al(NO3)3-A15 | 99.90 | — | 4.09 | 0.016 | 1.34 | 7.07 | 8.41 |
4%Al(NO3)3-A15 | 99.90 | 0.08 | 2.64 | 0.69 | 3.58 | 13.91 | 17.49 |
6%Al(NO3)3-A15 | 99.90 | 0.07 | 1.85 | 0.43 | 5.95 | 13.47 | 19.42 |
2%AlCl3-A15 | 100 | — | 1.83 | — | 3.61 | 11.84 | 15.45 |
4%AlCl3-A15 | 100 | 0.09 | 1. 88 | 0.76 | 7.36 | 17.59 | 24.96 |
6%AlCl3-A15 | 100 | 0.08 | 1.82 | 0.36 | 5.09 | 18.07 | 23.17 |
催化剂 | 原料转化率/% | 糠醛得率/% | 5-羟甲基糠醛得率/% | 糖苷类得率/% | 乙酰丙酸得率/% | 乙酰丙酸甲酯得率/% | 乙酰丙酸/酯得率/% |
---|---|---|---|---|---|---|---|
A15 | 100 | — | — | — | — | 1.65 | 1.65 |
2%LiCl-A15 | 100 | — | 2.89 | — | 2.88 | 3.32 | 6.20 |
4%LiCl-A15 | 100 | — | 3.16 | — | 7.20 | 10.58 | 17.78 |
6%LiCl-A15 | 100 | 0.10 | 3.02 | 0.79 | 8.36 | 14.35 | 22.71 |
2%CrCl3-A15 | 100 | — | 3.44 | — | 2.68 | 5.18 | 7.86 |
4%CrCl3-A15 | 100 | 0.06 | 1.68 | 0.21 | 5.29 | 16.00 | 21.29 |
6%CrCl3-A15 | 100 | 0.05 | 1.64 | 0.47 | 5.17 | 16.78 | 21.95 |
2%AlCl3-A15 | 100 | — | 1.83 | — | 3.61 | 11.84 | 15.45 |
4%AlCl3-A15 | 100 | 0.09 | 1.88 | 0.76 | 7.36 | 17.59 | 24.96 |
6%AlCl3-A15 | 100 | 0.08 | 1.82 | 0.36 | 5.09 | 18.07 | 23.17 |
催化剂 | 原料转化率/% | 糠醛得率/% | 5-羟甲基糠醛得率/% | 糖苷类得率/% | 乙酰丙酸得率/% | 乙酰丙酸甲酯得率/% | 乙酰丙酸/酯得率/% |
---|---|---|---|---|---|---|---|
A15 | 100 | — | — | — | — | 1.65 | 1.65 |
2%LiCl-A15 | 100 | — | 2.89 | — | 2.88 | 3.32 | 6.20 |
4%LiCl-A15 | 100 | — | 3.16 | — | 7.20 | 10.58 | 17.78 |
6%LiCl-A15 | 100 | 0.10 | 3.02 | 0.79 | 8.36 | 14.35 | 22.71 |
2%CrCl3-A15 | 100 | — | 3.44 | — | 2.68 | 5.18 | 7.86 |
4%CrCl3-A15 | 100 | 0.06 | 1.68 | 0.21 | 5.29 | 16.00 | 21.29 |
6%CrCl3-A15 | 100 | 0.05 | 1.64 | 0.47 | 5.17 | 16.78 | 21.95 |
2%AlCl3-A15 | 100 | — | 1.83 | — | 3.61 | 11.84 | 15.45 |
4%AlCl3-A15 | 100 | 0.09 | 1.88 | 0.76 | 7.36 | 17.59 | 24.96 |
6%AlCl3-A15 | 100 | 0.08 | 1.82 | 0.36 | 5.09 | 18.07 | 23.17 |
催化剂 | 反应溶剂 | 原料转化率 /% | 糠醛得率 /% | 5-羟甲基糠醛得率 /% | 糖苷类得率 /% | 乙酰丙酸得率 /% | 乙酰丙酸甲酯得率 /% | 乙酰丙酸/酯得率 /% |
---|---|---|---|---|---|---|---|---|
6%CrCl3-A15 | 水 | 100 | — | 1.04 | 2.33 | 16.90 | — | 16.90 |
6%CrCl3-A15 | 甲醇 | 100 | 0.05 | 1.64 | 0.47 | 5.17 | 16.78 | 21.95 |
A15 | 水 | 100 | — | 0.65 | 0.54 | 9.33 | — | 9.33 |
A15 | 甲醇 | 100 | 0.08 | — | — | — | 1.65 | 1.65 |
催化剂 | 反应溶剂 | 原料转化率 /% | 糠醛得率 /% | 5-羟甲基糠醛得率 /% | 糖苷类得率 /% | 乙酰丙酸得率 /% | 乙酰丙酸甲酯得率 /% | 乙酰丙酸/酯得率 /% |
---|---|---|---|---|---|---|---|---|
6%CrCl3-A15 | 水 | 100 | — | 1.04 | 2.33 | 16.90 | — | 16.90 |
6%CrCl3-A15 | 甲醇 | 100 | 0.05 | 1.64 | 0.47 | 5.17 | 16.78 | 21.95 |
A15 | 水 | 100 | — | 0.65 | 0.54 | 9.33 | — | 9.33 |
A15 | 甲醇 | 100 | 0.08 | — | — | — | 1.65 | 1.65 |
1 | TIAN Yijun, ZHANG Fangfang, WANG Jieni, et al. A review on solid acid catalysis for sustainable production of levulinic acid and levulinate esters from biomass derivatives[J]. Bioresource Technology, 2021,342: 125977. |
2 | PENG Qingpo, JIANG Yongjun, XU Beibei, et al. Zr oxo cluster for cascade conversion of furfural to alkyl levulinates[J]. ChemCatChem, 2023,15(5): e202201352. |
3 | BESSON Michèle, GALLEZOT Pierre, PINEL Catherine. Conversion of biomass into chemicals over metal catalysts[J]. Chemical Reviews, 2014, 114(3): 1827-1870. |
4 | 王磊, 徐天晓, 韩燕絮, 等. Ru/有机改性蛭石催化乙酰丙酸甲酯加氢性能的研究[J]. 燃料化学学报, 2020, 48(1): 100-107. |
WANG Lei, XU Tianxiao, HAN Yanxu, et al. Study on the catalytic hydrogenation of methyl levulinate over Ru/organic modified vermiculite[J]. Journal of Fuel Chemistry and Technology, 2020, 48(1): 100-107. | |
5 | 徐漓, 吴玉锋, 张元甲, 等. “双碳”背景下广东农林废弃物综合利用技术进展[J]. 化工进展, 2023, 42(11): 5648-5660. |
XU Li, WU Yufeng, ZHANG Yuanjia, et al. The progress of comprehensive utilization technology of agricultural and forestry wastes in Guangdong under the background of “carbon peaking and carbon neutrality”[J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5648-5660. | |
6 | IMYEN Thidarat, SAENLUANG Kachaporn, DUGKHUNTOD Pannida, et al. Investigation of ZSM-12 nanocrystals evolution derived from aluminosilicate nanobeads for sustainable production of ethyl levulinate from levulinic acid esterification with ethanol[J]. Microporous and Mesoporous Materials, 2021, 312: 110768. |
7 | 曾媛, 王允圃, 张淑梅, 等. 生物质微波热解制备液体燃料和化学品的研究进展[J]. 化工进展, 2021, 40(6): 3151-3162. |
ZENG Yuan, WANG Yunpu, ZHANG Shumei, et al. Research progress in preparation of liquid fuels and chemicals by microwave pyrolysis of biomass[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3151-3162. | |
8 | JIANG Linyun, ZHOU Lipeng, CHAO Jinyun, et al. Direct catalytic conversion of carbohydrates to methyl levulinate: Synergy of solid Brønsted acid and Lewis acid[J]. Applied Catalysis B: Environmental, 2018, 220: 589-596. |
9 | CIPTONUGROHO Wirawan, MENSAH Joel B, Ghith AL-SHAAL, et al. WO x /ZrO2 catalysts for the conversion of α-angelica lactone with butanol to butyl levulinates[J]. Chemical Papers, 2023, 77(7): 3769-3778. |
10 | PENG Lincai, LIN Lu, LI Hui, et al. Conversion of carbohydrates biomass into levulinate esters using heterogeneous catalysts[J]. Applied Energy, 2011, 88(12): 4590-4596. |
11 | TANG Ge, DENG Kuaqian, LI Panyang, et al. One-pot method of recyclable lipase-nanocatalyst based on chitosan magnetic nanomaterial for ethyl levulinate synthesis[J]. Composites Science and Technology, 2023, 236: 110002. |
12 | Cristhian CAñON, SANCHEZ Nestor, COBO Martha. Sustainable production of ethyl levulinate by levulinic acid esterification obtained from Colombian rice straw[J]. Journal of Cleaner Production, 2022, 377: 134276. |
13 | 徐杨杨, 祝慧敏, 李辰, 等. 竹材纤维定向醇解转化制备乙酰丙酸甲酯的研究[J]. 燃料化学学报, 2021, 49(12): 1889-1897. |
XU Yangyang, ZHU Huimin, LI Chen, et al. Study on preparation of methyl levulinate by directional alcoholysis of bamboo biomass[J]. Journal of Fuel Chemistry and Technology, 2021, 49(12): 1889-1897. | |
14 | DU Xinyuan, LU Xuebin, BAI Hui, et al. Mesoporous molecular sieves solid superacid as a catalyst for alcoholysis of fructose into methyl levulinate[J]. Biomass and Bioenergy, 2022, 166: 106627. |
15 | ZHANG Luxin, TIAN Lu, XU Ziyuan, et al. Direct production of ethyl levulinate from carbohydrates and biomass waste catalyzed by modified porous silica with multiple acid sites[J]. Process Biochemistry, 2022, 121: 152-162. |
16 | TIWARI Manishkumar S, GAWADE Anil B, YADAV Ganapati D. Magnetically separable sulfated zirconia as highly active acidic catalysts for selective synthesis of ethyl levulinate from furfuryl alcohol[J]. Green Chemistry, 2017, 19(4): 963-976. |
17 | GAUTAM Priyanka, BARMAN Sanghamitra, Amjad ALI. A comparative study on the performance of acid catalysts in the synthesis of levulinate ester using biomass-derived levulinic acid: A review[J]. Biofuels, Bioproducts and Biorefining, 2022, 16(4): 1095-1115. |
18 | CHAOWAMALEE Supphathee, YAN Ning, NGAMCHARUSSRIVICHAI Chawalit. Propylsulfonic acid-functionalized mesostructured natural rubber/silica nanocomposites as promising hydrophobic solid catalysts for alkyl levulinate synthesis[J]. Nanomaterials, 2022, 12(4): 604. |
19 | CHHABRA Tripti, ROHILLA Jyoti, KRISHNAN Venkata. Nanoarchitectonics of phosphomolybdic acid supported on activated charcoal for selective conversion of furfuryl alcohol and levulinic acid to alkyl levulinates[J]. Molecular Catalysis, 2022, 519: 112135. |
20 | RUSSO Vincenzo, ROSSANO Carmelina, SALUCCI Emiliano, et al. Intraparticle diffusion model to determine the intrinsic kinetics of ethyl levulinate synthesis promoted by Amberlyst-15[J]. Chemical Engineering Science, 2020, 228: 115974. |
21 | BADGUJAR Kirtikumar C, BADGUJAR Vivek C, BHANAGE Bhalchandra. M. A review on catalytic synthesis of energy rich fuel additive levulinate compounds from biomass derived levulinic acid [J]. Fuel Processing Technology, 2020, 197: 106213. |
22 | MELFI Diego Trevisan, DOS SANTOS Kallynca Carvalho, RAMOS Luiz Pereira, et al. Supercritical CO2 as solvent for fatty acids esterification with ethanol catalyzed by Amberlyst-15[J]. The Journal of Supercritical Fluids, 2020, 158: 104736. |
23 | WANG Zixin, XIE Chao, LI Xun, et al. Amberlyst-15 supported zirconium sulfonate as an efficient catalyst for Meerwein-Ponndorf-Verley reductions[J]. Chemical Communications, 2022, 58(25): 4067-4070. |
24 | XU Siquan, YIN Chunyu, PAN Donghui, et al. Efficient conversion of glucose into 5-hydroxymethylfurfural using a bifunctional Fe3+ modified Amberlyst-15 catalyst[J]. Sustainable Energy & Fuels, 2019, 3(2): 390-395. |
25 | 周硕, 王辉, 王苏宁, 等. 硅铝比对Cu/SSZ-13分子筛低温催化性能的影响[J].化学工程, 2021, 49(7): 61-66. |
ZHOU Shuo, WANG Hui, WANG Suning, et al. Effect of Si/Al ratio on catalytic reduction performance of Cu/SSZ-13 zeolite for NH3-SCR at low temperature[J]. Chemical Engineering, 2021, 49(7): 61-66. | |
26 | ÖZGÜR Derya Öncel, Tayyibe ŞIMŞEK, Göksel ÖZKAN, et al. The Hydroloysis of ammonia borane by using Amberlyst-15 supported catalysts for hydrogen generation[J]. International Journal of Hydrogen Energy, 2018, 43(23): 10765-10772. |
27 | XING Xinyi, SHI Xian, HU Rui, et al. Hf-β zeolites as highly efficient catalysts for the production of 5-hydroxymethylfurfural from cellulose in biphasic system[J]. International Journal of Biological Macromolecules, 2022, 222: 3014-3023. |
28 | 彭林才, 林鹿, 李辉. 生物质转化合成新能源化学品乙酰丙酸酯[J].化学进展, 2012, 24(5): 801-809. |
PENG Lincai, LIN Lu, LI Hui. Conversion of biomass into levulinate esters as novel energy chemicals[J]. Progress in Chemistry, 2012, 24(5): 801-809. | |
29 | KASAR Gayatri B, DATE Nandan S, BHOSALE P N, et al. Steering the ester and γ-valerolactone selectivities in levulinic acid hydrogenation[J]. Energy & Fuels, 2018, 32(6): 6887-6900. |
30 | WU Xiaoyu, FU Jie, LU Xiuyang. One-pot preparation of methyl levulinate from catalytic alcoholysis of cellulose in near-critical methanol[J]. Carbohydrate Research 2012, 358: 37-39. |
31 | RAVASCO Joao M J M, COELHO Jaime A S, SIMEONOV Svilen P, et al. Bifunctional Cr3+ modified ion exchange resins as efficient reusable catalysts for the production and isolation of 5-hydroxymethylfurfural from glucose[J]. RSC Advances, 2017, 7(13): 7555-7559. |
[1] | WU Da, JIANG Shujiao, WEI Qiang, YUAN Shenghua, YANG Gang, ZHANG Cheng. Research progress on efficient utilization technology of residue in energy transition [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2343-2353. |
[2] | GUI Xin, CHEN Huiyong, BAI Boyang, JIA Yongliang, MA Xiaoxun. Catalytic hydrogenation of pyrene over Mo-doped NiC/Al-MCM-41 [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2386-2395. |
[3] | DING Sijia, JIANG Shujiao, YANG Zhanlin, PENG Shaozhong, JIANG Qianmin. Design of heavy oil hydrodenitrogenation catalysts based on hydrogenation performance determined by structure of nitrogen compounds [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2436-2448. |
[4] | HAN Wei, HAN Hengwen, CHENG Wei, TANG Weijian. Research progress of biomass fuels technology driven by carbon neutrality [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2463-2474. |
[5] | DUAN Xiang, TIAN Ye, DONG Wenwei, SONG Song, LI Xingang. Research progress on reaction networks and catalytic reaction mechanisms of phthalic anhydride synthesis [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2587-2599. |
[6] | FANG Yao, LIU Lei, GAO Zhihua, HUANG Wei, ZUO Zhijun. Advances in anode catalysts for photo-assisted direct methanol fuel cells [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2611-2628. |
[7] | ZHANG Jinpeng, QU Ting, JING Jieying, LI Wenying. Composite catalyst of sorption enhanced water gas shift for hydrogen production: A review [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2629-2644. |
[8] | LI Na, ZHAO Wantong, LING Lixia, WANG Baojun, ZHANG Riguang. Confined environment of RhCu catalyst to regulate the reaction performance for synthesis gas conversion to CH x [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2684-2695. |
[9] | FENG Yongqiang, WANG Jieru, WANG Chaoxian, LI Fang, SU Wanting, SUN Yu, ZHAO Binran. Influence of Ni, Fe, and Cu loaded on γ-Al2O3 in CO2/CH4 conversion via dielectric barrier discharge plasma [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2705-2713. |
[10] | ZHOU Yuntao, WANG Hongxing, LI Xingang, CUI Lifeng. Application and research progress of CeO2 support in CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2723-2738. |
[11] | HUANG Peng, ZOU Ying, WANG Baohuan, WANG Xiaoyan, ZHAO Yong, LAING Xin, HU Di. Research progress of electrocatalysts towards electrocatalytic reduction reaction of carbon dioxide to syngas [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2760-2775. |
[12] | LU Xinxin, CAI Dongren, ZHAN Guowu. Research progress in the construction of integrated catalysts based on solid precursors and their application in CO2 hydrogenation [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2786-2802. |
[13] | LI Haipeng, WU Tong, WANG Qi, GAO Shiwang, WANG Xiaolong, LI Xu, GAO Xinhua, NIAN Pei, WEI Yibin. Effective methanol production by CO2 hydrogenation using water-permeable NaA zeolite membrane [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2834-2842. |
[14] | WANG Bing, WANG Lei, HUANG Xinru, YUAN Hongpeng, LAI Xiaojuan, LI Peng. Synthesis and performance test of an acid and alkali resistant high strength resin [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1992-2000. |
[15] | LIU Ruolu, TANG Haibo, HE Feifei, LUO Fengying, WANG Jinge, YANG Na, LI Hongwei, ZHANG Ruiming. Recent research and prospect of liquid organic hydrogen carries technology [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1731-1741. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |