Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (10): 5310-5321.DOI: 10.16085/j.issn.1000-6613.2022-2223
• Materials science and technology • Previous Articles Next Articles
YE Hao1(), HU Ping2, WANG Ce3, LIU Yong4()
Received:
2022-12-01
Revised:
2023-01-31
Online:
2023-11-11
Published:
2023-10-15
Contact:
LIU Yong
通讯作者:
刘勇
作者简介:
叶好(2002—),女,硕士研究生,研究方向为高分子材料。E-mail:2019100064@buct.edu.cn。
基金资助:
CLC Number:
YE Hao, HU Ping, WANG Ce, LIU Yong. Advances in research on magnetic fibrous electromagnetic wave absorbers[J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5310-5321.
叶好, 胡平, 王策, 刘勇. 磁性纤维电磁波吸收剂研究进展[J]. 化工进展, 2023, 42(10): 5310-5321.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-2223
类型 | 优点 | 缺点 | 复合材料 |
---|---|---|---|
铁氧体纤维 | 性能稳定、来源广泛、易于制备 | 吸收带宽窄、阻抗匹配差 | Cu、Ce等金属、石墨烯 |
纳米纤维 | 高的机械强度和柔韧性;硬度高、耐高温、耐腐蚀、密度低 | 高温易氧化、吸波频带较窄、阻抗失配 | Co、Ni等金属、金属有机框架、碳纳米纤维 |
磁性非晶纤维 | 具有多重电磁损耗和合适的阻抗匹配,而且具有磁性的导电芯 | 制备工序复杂 | — |
类型 | 优点 | 缺点 | 复合材料 |
---|---|---|---|
铁氧体纤维 | 性能稳定、来源广泛、易于制备 | 吸收带宽窄、阻抗匹配差 | Cu、Ce等金属、石墨烯 |
纳米纤维 | 高的机械强度和柔韧性;硬度高、耐高温、耐腐蚀、密度低 | 高温易氧化、吸波频带较窄、阻抗失配 | Co、Ni等金属、金属有机框架、碳纳米纤维 |
磁性非晶纤维 | 具有多重电磁损耗和合适的阻抗匹配,而且具有磁性的导电芯 | 制备工序复杂 | — |
1 | 李昌龄. 锦纶基磁性纺织品功能性研究[D]. 无锡: 江南大学, 2020. |
LI Changling. Study on the function of nylon-based magnetic textiles[D]. Wuxi: Jiangnan University, 2020. | |
2 | 张华伟, 王炜. 吸波材料的最新研究现状及发展趋势[J]. 纺织导报, 2021(6): 95-96. |
ZHANG Huawei, WANG Wei. The latest research status and development trend of absorbing materials[J]. China Textile Leader, 2021(6): 95-96, 98. | |
3 | 杨晴. 陶瓷基干涉型吸波材料的制备和性能研究[D]. 烟台: 烟台大学, 2022. |
YANG Qing. Preparation and properties of ceramic-based interference absorbing materials[D]. Yantai: Yantai University, 2022. | |
4 | 李享成, 龚荣洲, 何华辉, 等. 磁性纤维吸收剂的国内外研究进展[J]. 兵器材料科学与工程, 2008, 31(5): 86-91. |
LI Xiangcheng, GONG Rongzhou, HE Huahui, et al. Research progress in magnetic fibers-filled microwave absorbing materials[J]. Ordnance Material Science and Engineering, 2008, 31(5): 86-91. | |
5 | DEVI N P, MAISNAM M. Characterizations of sol-gel synthesized and high energy ball milled spinel nanoferrites: MFe2O4 (M = Li, Ni, Zn, Mn) for nanofluid preparations[J]. Integrated Ferroelectrics, 2020, 204(1): 133-141. |
6 | 李勤华. 高频磁铅石型铁氧体材料的制备及软磁特性研究[D]. 成都: 电子科技大学, 2022. |
LI Qinhua. Preparation of magnetoplumbite ferrites and their soft magnetic properties for high frequency applications[D]. Chengdu: University of Electronic Science and Technology of China, 2022. | |
7 | 倪鹤年. 高功率低损耗石榴石微波铁氧体研究[D]. 成都: 电子科技大学, 2022. |
NI Henian. Research on high power and low loss garnet microwave ferrite[D]. Chengdu: University of Electronic Science and Technology of China, 2022. | |
8 | 王彩霞, 刘元军. 磁损耗型吸波材料的发展现状[J]. 丝绸, 2021, 58(2): 27-34. |
WANG Caixia, LIU Yuanjun. Developments status of magnetic loss wave-absorbing materials[J]. Journal of Silk, 2021, 58(2): 27-34. | |
9 | 陈卓. 静电纺丝制备Bi2SiO5/Bi2Fe4O9/C3N4多孔纤维及其性能研究[D]. 北京: 中国地质大学, 2020. |
CHENZhuo. Preparation and properties of Bi2SiO5/Bi2Fe4O9/C3N4 porous fibers by electrospinning[D]. Beijing: China University of Geosciences, 2020. | |
10 | 马海宁. 金属氧化物/石墨烯复合材料的制备及其相关性能研究[D]. 西安: 西安工业大学, 2019. |
MA Haining. Preparation of metal oxide/graphene composites and their related properties[D]. Xi’an: Xi’an Technological University, 2019. | |
11 | 冯一哲. 溶胶凝胶制备磁性纤维及其吸波性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. |
FENG Yizhe. Microwave absorption performance of magnetic fibers prepared by sol-gel method[D]. Harbin: Harbin Institute of Technology, 2019. | |
12 | 陈宇成. M型钡铁氧体结构及其吸波性能的研究[D]. 桂林: 桂林电子科技大学, 2022. |
CHEN Yucheng. Study on the structure and absorbing properties of M-type barium ferrite[D]. Guilin: Guilin University of Electronic Technology, 2022. | |
13 | SHARMA V, SAHA J, PATNAIK S, et al. YIG based broad band microwave absorber: A perspective on synthesis methods[J]. Journal of Magnetism and Magnetic Materials, 2017, 439: 277-286. |
14 | ZHOU Yao, CHEN Lyuyun, JIAN Mulin, et al. Recent research progress of ferrite multielement microwave absorbing composites[J]. Advanced Engineering Materials, 2022, 24(12): 2200526. |
15 | 张牧. 电/磁损耗型吸波材料的制备及性能研究[D]. 镇江: 江苏大学, 2021. |
ZHANG Mu. Preparation and properties of electrical/magnetic loss absorbing materials[D]. Zhenjiang: Jiangsu University, 2021. | |
16 | GE Yaqing, LI Cuiping, JIANG Xiaohui, et al. ZnFe2O4@polypyrrole nanocomposites as an efficient broadband electromagnetic wave absorber at 2—40GHz[J]. Ceramics International, 2019, 45(11): 13883-13893. |
17 | GE Y Q, LI C P, WATERHOUSE G I N, et al. ZnFe2O4@SiO2@ polypyrrole nanocomposites with efficient electromagnetic wave absorption properties in the K and Ka band regions[J]. Ceramics International, 2021, 47(2): 1728-1739. |
18 | 吴梦, 饶磊, 张建峰, 等. MXene及其复合吸波材料的制备与性能研究进展[J]. 复合材料学报, 2022, 39(3): 942-955. |
WU Meng, RAO Lei, ZHANG Jianfeng, et al. Research progress in preparation and performance of MXene and its composite absorbing materials[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 942-955. | |
19 | ZHANG Zhiwei, CAI Zhihao, ZHANG Yi, et al. The recent progress of MXene-based microwave absorption materials[J]. Carbon, 2021, 174: 484-499. |
20 | PAN Fei, YU Lunzhou, XIANG Zhen, et al. Improved synergistic effect for achieving ultrathin microwave absorber of 1D Co nanochains/2D carbide MXene nanocomposite[J]. Carbon, 2021, 172: 506-515. |
21 | 王欣欣, 李凌, 刘慧, 等. PPy@Fe3O4@MXene复合材料吸波性能研究[J]. 机电产品开发与创新, 2021, 34(5): 115-117. |
WANG Xinxin, LI Ling, LIU Hui, et al. Research on the absorbing properties of PPy@Fe3O4@MXene composites[J]. Development & Innovation of Machinery & Electrical Products, 2021, 34(5): 115-117. | |
22 | 李享成, 龚荣洲, 何华辉, 等. 磁性纤维吸收剂的国内外研究进展[J]. 兵器材料科学与工程, 2008, 31(5): 86-91. |
LI Xiangcheng, GONG Rongzhou, HE Huahui, et al. Research progress in magnetic fibers-filled microwave absorbing materials[J]. Ordnance Material Science and Engineering, 2008, 31(5): 86-91. | |
23 | 曲冠达. Ni掺杂Fe基金属纤维组织结构及其力学、吸波性能研究[D]. 呼和浩特: 内蒙古工业大学, 2021. |
QU Guanda. Research on microstructure, mechanical and microwave absorbing properties of Ni-doped Fe-based metallic microwires[D]. Hohhot: Inner Mongolia University of Technology, 2021. | |
24 | XU Xueqing, RAN Feitian, FAN Zhimin, et al. Bimetallic metal-organic framework-derived pomegranate-like nanoclusters coupled with CoNi-doped graphene for strong wideband microwave absorption[J]. ACS Applied Materials & Interfaces, 2020, 12(15): 17870-17880. |
25 | YAN Jing, HUANG Ying, YAN Yonghui, et al. The composition design of MOF-derived Co-Fe bimetallic autocatalysis carbon nanotubes with controllable electromagnetic properties[J]. Composites Part A: Applied Science and Manufacturing, 2020, 139: 106107. |
26 | ZHAO Xiaoxiao, YAN Jing, HUANG Ying, et al. Magnetic porous CoNi@C derived from bamboo fiber combined with metal-organic-framework for enhanced electromagnetic wave absorption[J]. Journal of Colloid and Interface Science, 2021, 595: 78-87. |
27 | 彭俊豪, 郭建华, 蒋兴华. 吸波弹性体材料的研究进展[J]. 弹性体, 2021, 31(4): 75-82. |
PENG Junhao, GUO Jianhua, JIANG Xinghua. Research progress of microwave-absorbing elastomer materials[J]. China Elastomerics, 2021, 31(4): 75-82. | |
28 | 莫红松. 碳系复合材料的吸波性能和力学性能研究[D]. 上海:东华大学, 2008. |
MO Hongsong. Study on microwave absorbing ability and mechanical properties of carbonous composites[D]. Shanghai: Donghua University, 2008. | |
29 | JIN Dan, YANG Xiaolong, WEI Ying. Preparation and enhancement microwave absorption properties of carbon fibers coated with CoNi alloy by solvothermal[J]. Journal of Materials Science: Materials in Electronics, 2022, 33(7): 4510-4522. |
30 | MA Mingliang, LIAO Zijian, SU Xuewei, et al. Magnetic CoNi alloy particles embedded N-doped carbon fibers with polypyrrole for excellent electromagnetic wave absorption[J]. Journal of Colloid and Interface Science, 2022, 608: 2203-2212. |
31 | YIN Pengfei, ZHANG Limin, WANG Jian, et al. Facile preparation of cotton-derived carbon fibers loaded with hollow Fe3O4 and CoFe NPs for significant low-frequency electromagnetic absorption[J]. Powder Technology, 2021, 380: 134-142. |
32 | LIU Peizhou, GAO Tiande, HE Wenjuan, et al. Electrospinning of hierarchical carbon fibers with multi-dimensional magnetic configurations toward prominent microwave absorption[J]. Carbon, 2023, 202: 244-253. |
33 | 李天天, 夏龙, 黄小萧, 等. 介电损耗型微波吸收材料的研究进展[J]. 材料工程, 2021, 49(6): 1-13. |
LI Tiantian, XIA Long, HUANG Xiaoxiao, et al. Progress in dielectric loss microwave absorbing materials[J]. Journal of Materials Engineering, 2021, 49(6): 1-13. | |
34 | HUO Yashan, TAN Yujia, ZHAO Kang, et al. Enhanced electromagnetic wave absorption properties of Ni magnetic coating-functionalized SiC/C nanofibers synthesized by electrospinning and magnetron sputtering technology[J]. Chemical Physics Letters, 2021, 763: 138230. |
35 | 张天豪. 磁控溅射法制备TiO2电子传输层及其钙钛矿太阳能电池性能研究[D]. 景德镇: 景德镇陶瓷大学, 2022. |
ZHANG Tianhao. Preparation of TiO2 electron transport layer by magnetron sputtering and its performance of perovskite solar cells[D]. Jingdezhen: Jingdezhen University of Ceramics, 2022. | |
36 | LARIN V S, TORCUNOV A V, ZHUKOV A, et al. Preparation and properties of glass-coated microwires[J]. Journal of Magnetism and Magnetic Materials, 2002, 249(1/2): 39-45. |
37 | DI Yongjiang, JIANG Jianjun, DU Gang, et al. Magnetic and microwave properties of glass-coated amorphous ferromagnetic microwires[J]. Transactions of Nonferrous Metals Society of China, 2007, 17(6): 1352-1357. |
38 | JI Hui, DAI Guoliang, CHEN Jianying, et al. Ultralight broadband microwave-absorbing materials based on the short fibers of glass-coated amorphous magnetic microwires[J]. Journal of Alloys and Compounds, 2022, 911: 164904. |
[1] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Effects of graphene oxide/carbon nanotubes on the properties of several typical polymer materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3012-3028. |
[2] | ZHANG Jianzhong, XU Sheng, FAN Jiashu, FEI Zhenyu, WANG Kun, HUANG Jian, CUI Fengbo, RAN Wenhua. Progress in characterization and analysis of glass fiber sizing [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 821-838. |
[3] | YANG Zhuangzhuang, LIU Yongjun, LIU Xingshe, LIU Zhe, YANG Lu, ZHANG Aining. Coalescence separation of oily sludge and removal effect of organic substances from coal chemical wastewater [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 538-545. |
[4] | QIN Jian, LIU Tianxia, WANG Jian, LU Xing. Preparation and tribological properties of oleic acid modified graphene/molybdenum disulfide composite lubricating additives [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4973-4985. |
[5] | ZHENG Jinbao, LI Chen. Research progress in improving hydrophobicity of starch-based packaging materials [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3089-3102. |
[6] | XIA Zhenguo, ZHU Yingying, CHEN Geng, LU Yu, WANG Jiafeng. Progress in preparation and modification of TiO2/AC composite photocatalysts for environmental purification [J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3837-3846. |
[7] | WANG Chengjun, SU Qiong, DUAN Zhiying, WANG Aijun, WANG Zhichao. Research progress of shape-stable composite phase change energy storage materials based on porous supports [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1483-1494. |
[8] | Yanyan FENG, Yanjie LI, Wen YANG, Xiaodi NIU. Synthesis and capacitive properties of carbon sphere@nanosheet-like cobalt-nickel oxides core-shell structured composites [J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2734-2741. |
[9] | Xiaozhi XU, Biao LI, Kaiqiang SHI, Siyuan DONG, Zuchao JIN, Jingbin HAN. Recent advances in LDHs-based gas barrier materials [J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2177-2186. |
[10] | Xuexia GAO, Xi ZHOU, Meihong LIU, Yufeng MA, Jifu WANG, Chunpeng WANG, Fuxiang CHU. Carbon dots/Fe3+ composites for biosensor detection of ascorbic acid [J]. Chemical Industry and Engineering Progress, 2019, 38(07): 3326-3331. |
[11] | Chaocheng ZHAO, Guangrui WU. Research progress on the mechanism and applications of MOFs composite materials for catalytic degradation of organic pollutants in the solution [J]. Chemical Industry and Engineering Progress, 2019, 38(04): 1775-1784. |
[12] | ZU Liwu, WANG Xu, WANG Yazhen, WANG Yuwei, XU Shuangping, JIA Weinan. Preparation and application of layered graphene oxide/polypropylene-grafted-sulfonated styrene/polyaniline composites antistatic agent [J]. Chemical Industry and Engineering Progress, 2018, 37(11): 4370-4377. |
[13] | XU Chong, ZHANG Xiaolin, CONG Longkang, DENG Xiangsheng, JIN Xiao, NIE Sunjian. Progress of natural fiber reinforced polylactic acid biodegradable composites [J]. Chemical Industry and Engineering Progress, 2017, 36(10): 3751-3756. |
[14] | AI Xiaolin, CHEN Yandan, HUANG Biao, CHEN Xuerong. Progress in comprehensive utilization of loofah sponge fibers [J]. Chemical Industry and Engineering Progree, 2015, 34(06): 1708-1713,1729. |
[15] | SHANG Baoyue1,YANG Shaobin2. Research progress of basalt fiber reinforced polymer composites [J]. Chemical Industry and Engineering Progree, 2011, 30(8): 1766-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |