[1] Oboh I O, Aluyor E O. Luffa cylindrical-An emerging cash crop[J]. African Journal of Agricultural Research, 2009, 4(8):684-688. [2] Altınışık A, Gür E, Seki Y. A natural sorbent, luffa cylindrical for the removal of a model basic dye[J]. Journal of Hazardous Materials, 2010, 179(1):658-664. [3] Demir H, Atikler U, Balköse D, et al. The effect of fiber surface treatments on the tensile and water sorption properties of polypropylene-luffa fiber composites[J]. Composites Part A:Applied Science and Manufacturing, 2006, 37(3):447-456. [4] Tanobe V O A, Sydenstricker T H D, Munaro M, et al. A comprehensive characterization of chemically treated Brazilian sponge-gourds(luffa cylindrica)[J]. Polymer Testing, 2005, 24(4):474-482. [5] Adewuyi A, Oderinde R A, Rao B, et al. Blighia unijugata and luffa cylindrica seed oils:Renewable sources of energy for sustainable development in rural Africa[J]. BioEnergy Research, 2012, 5(3):713-718. [6] 颜国纲, 郑振佳, 时新刚, 等. 丝瓜的营养价值及其综合利用研究进展[J]. 中国果菜, 2011(7):35-36 [7] Shen J, Min Xie Y, Huang X, et al. Mechanical properties of luffa sponge[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 15:141-152. [8] 黎炎, 李文嘉, 王益奎, 等. 丝瓜络在医药, 日用洗涤及保健品等方面的应用研究进展[J]. 广西农业科学, 2010(1):85-87. [9] Shen J H, Xie Y M, Huang X D, et al. Behaviour of luffa sponge material under dynamic loading[J]. International Journal of Impact Engineering, 2013, 57:17-26. [10] Akgül M, Korkut S, Çamlıbel O, et al. Some chemical properties of luffa and its suitability for medium density fiberboard (MDF) production[J]. BioResources, 2013, 8(2):1709-1717. [11] Espert A, Vilaplana F, Karlsson S. Comparison of water absorption in natural cellulosic fibres from wood and one-year crops in polypropylene composites and its influence on their mechanical properties[J]. Composites Part A:Applied Science and Manufacturing, 2004, 35(11):1267-1276. [12] Guimarães J L, Frollini E, Da Silva C G, et al. Characterization of banana, sugarcane bagasse and sponge gourd fibers of Brazil[J]. Industrial Crops and Products, 2009, 30(3):407-415. [13] Siqueira G, Bras J, Dufresne A. Luffa cylindrica as a lignocellulosic source of fiber, microfibrillated cellulose and cellulose nanocrystals[J]. BioResources, 2010, 5(2):727-740. [14] 吴巧妹, 陈思源, 陈燕丹. 丝瓜络纳米纤维素晶体的制备与表征[J]. 西北农林科技大学学报:自然科学版, 2014, 42(4):229-234. [15] Laidani Y, Hanini S, Mortha G, et al. Study of a fibrous annual plant, luffa cylindrica for paper application Part Ⅰ:Characterization of the vegetal[J]. Iranian Journal of Chemistry & Chemical Engineering:International English Edition, 2012, 31(4):119-129. [16] Shen J, Min X Y, Huang X, et al. Mechanical properties of luffa sponge[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 15:141-152. [17] Chen Q, Shi Q, Gorb S N, et al. A multiscale study on the structural and mechanical properties of the luffa sponge from luffa cylindrica plant[J]. Journal of Biomechanics, 2014, 47(6):1332-1339. [18] Demir H, Top A, Balköse D, et al. Dye adsorption behavior of luffa cylindrica fibers[J]. Journal of Hazardous Materials, 2008, 153(1):389-394. [19] Yang H, Mao H, Lu Q, et al. Esterification of luffa with acetic anhydride under microwave radiation determined by FTIR[J]. Journal of Macromolecular Science, Part B:Physics, 2010, 50(2):319-328. [20] Ye C, Hu N, Wang Z. Experimental investigation of luffa cylindrica as a natural sorbent material for the removal of a cationic surfactant[J]. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44(1):74-80. [21] Gupta V K, Agarwal S, Singh P, et al. Acrylic acid grafted cellulosic luffa cylindrical fiber for the removal of dye and metal ions[J]. Carbohydrate Polymers, 2013, 98(1):1214-1221. [22] Saw S K, Purwar R, Nandy S, et al. Fabrication, characterization, and evaluation of luffa cylindrica fiber reinforced epoxy composites[J]. BioResources, 2013, 8(4):4805-4826. [23] Ghali L, Msahli S, Zidi M, et al. Effect of pre-treatment of luffa fibres on the structural properties[J]. Materials Letters, 2009, 63(1):61-63. [24] Botaro V R, Novack K M, Siqueira E J. Dynamic mechanical behavior of vinylester matrix composites reinforced by luffa cylindrica modified fibers[J]. Journal of Applied Polymer Science, 2012, 124(3):1967-1975. [25] Kaewtatip K, Thongmee J. Studies on the structure and properties of thermoplastic starch/luffa fiber composites[J]. Materials & Design, 2012, 40:314-318. [26] Bal K E, Bal Y, Cote G, et al. Morphology and antimicrobial properties of Luffa cylindrica fibers/chitosan biomaterial as micro-reservoirs for silver delivery[J]. Materials Letters, 2012, 79:238-241. [27] Kocak D, Merdan N, Yuksek M, et al. Effects of chemical modifications on mechanical properties of luffa cylindrica[J]. Asian Journal of Chemistry, 2013, 25(2):637-641. [28] Martínez-Barrera G, Vigueras-Santiago E, Martínez-López M, et al. Luffa fibers and gamma radiation as improvement tools of polymer concrete[J]. Construction and Building Materials, 2013, 47:86-91. [29] Wang Y, Shen X Y. Optimum plasma surface treatment of luffa fibers[J]. Journal of Macromolecular Science, Part B, 2012, 51(4):662-670. [30] Siqueira G, Bras J, Dufresne A. Cellulose whiskers versus microfibrils:Influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites[J]. Biomacromolecules, 2008, 10(2):425-432. [31] Siqueira G, Bras J, Follain N, et al. Thermal and mechanical properties of bio-nanocomposites reinforced by luffa cylindrica cellulose nanocrystals[J]. Carbohydrate Polymers, 2013, 91(2):711-717. [32] 王洪祚, 刘世勇. 酶和细胞的固定化[J]. 化学通报, 1997(2):22-27. [33] 张磊, 张烨, 侯红萍. 固定化细胞技术的研究进展[J]. 四川食品与发酵, 2006(2):17-18. [34] 白燕, 王士斌, 刘源岗. 细胞固定化载体材料的研究进展及应用[J]. 广东化工, 2010, 37(4):11-12. [35] Pekdemir T, Keskinler B, Yildiz E, et al. Process intensification in wastewater treatment:Ferrous iron removal by a sustainable membrane bioreactor system[J]. Journal of Chemical Technology and Biotechnology, 2003, 78(7):773-780. [36] Krusong W, Tantratian S. Acetification of rice wine by acetobacter aceti using loofa sponge in a low-cost reciprocating shaker[J]. Journal of Applied Microbiology, 2014, 117(5):1348-1357. [37] Jin Y L, Alex Speers R. Flocculation of Saccharomyces cerevisiae[J]. Food Research International, 1998, 31(6):421-440. [38] Macaskie L E, Wates J M, Dean A C R. Cadmium accumulation by a Citrobacter sp. immobilized on gel and solid supports:Applicability to the treatment of liquid wastes containing heavy metal cations[J]. Biotechnology and Bioengineering, 1987, 30(1):66-73. [39] Boyaval P, Goulet J. Optimal conditions for production of lactic acid from cheese whey permeate by Ca-alginate-entrapped Lactobacillus helveticus[J]. Enzyme and Microbial Technology, 1988, 10(12):725-728. [40] Liu Y K, Seki M, Tanaka H, et al. Characteristics of loofa (luffa cylindrical) sponge as a carrier for plant cell immobilization[J]. Journal of Fermentation and Bioengineering, 1998, 85(4):416-421. [41] Ogbonna J C, Liu Y C, Liu Y K, et al. Loofa (luffa cylindrica sponge as a carrier for microbial cell immobilization[J]. Journal of Fermentation and Bioengineering, 1994, 78(6):437-442. [42] Iqbal M, Zafar S I. The use of fibrous network of matured dried fruit of luffa aegyptica as immobilizing agent[J]. Biotechnology Techniques, 1993, 7(1):15-18. [43] Jones R F, Speer H L, Kury W. Studies on the growth of the red alga porphyridium cruentum[J]. Physiologia Plantarum, 1963, 16(3):636-643. [44] Roble N, Ogbonna J, Tanaka H. A novel circulating loop bioreactor with cells immobilized in loofa (luffa cylindrical) sponge for the bioconversion of raw cassava starch to ethanol[J]. Applied Microbiology and Biotechnology, 2003, 60(6):671-678. [45] Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures[J]. Physiologia Plantarum, 1962, 15(3):473-497. [46] Chen J P, Lin T C. Loofa sponge as a scaffold for culture of rat hepatocytes[J]. Biotechnology Progress, 2005, 21(1):315-319. [47] Chen J P, Lin T C. High-density culture of hepatocytes in a packed-bed bioreactor using a fibrous scaffold from plant[J]. Biochemical Engineering Journal, 2006, 30(2):192-198. [48] Chen J P, Yu S C, Hsu B R S, et al. Loofa sponge as a scaffold for the culture of human hepatocyte cell line[J]. Biotechnology Progress, 2003, 19(2):522-527. [49] Saeed A, Iqbal M. Loofa (luffa cylindrical) sponge:Review of development of the biomatrix as a tool for biotechnological applications[J]. Biotechnology Progress, 2013, 29(3):573-600. [50] Saudagar P S, Shaligram N S, Singhal R S. Immobilization of streptomyces clavuligerus on loofah sponge for the production of clavulanic acid[J]. Bioresource Technology, 2008, 99(7):2250-2253. [51] 郭晓燕, 徐尔尼. 固定化细胞生物反应器的应用及研究进展[J]. 食品工业科技, 2006, 27(5):191-194. [52] Saab H B, Fouchard S, Boulanger A, et al. Luffa cylindrica and phytosterols bioconversion:From shake flask to jar bioreactor[J]. Journal of Industrial Microbiology & Biotechnology, 2013, 40(11):1315-1320. [53] Zampieri A, Mabande G T P, Selvam T, et al. Biotemplating of luffa cylindrica sponges to self-supporting hierarchical zeolite macrostructures for bio-inspired structured catalytic reactors[J]. Materials Science and Engineering:C, 2006, 26(1):130-135. [54] Mazali I O, Alves O L. Morphosynthesis:High fidelity inorganic replica of the fibrous network of loofa sponge (luffa cylindrical)[J]. Anais da Academia Brasileira de Ciências, 2005, 77(1):25-31. [55] El-Roz M, Haidar Z, Lakiss L, et al. Immobilization of TiO2 nanoparticles on natural luffa cylindrica fibers for photocatalytic applications[J]. RSC Advances, 2013, 3(10):3438-3445. [56] 李园园, 陈少华, 张召基, 等. KOH 活化丝瓜络制备高比表面积活性炭[J]. 化工进展, 2012, 31(6):1274-1279. [57] 李园园, 张召基, 石建稳, 等. 氯化锌活化丝瓜络制备微孔活性炭[J]. 炭素技术, 2012, 31(3):A1-A5. |