Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (3): 1483-1494.DOI: 10.16085/j.issn.1000-6613.2020-0855
• Materials science and technology • Previous Articles Next Articles
WANG Chengjun(), SU Qiong, DUAN Zhiying, WANG Aijun, WANG Zhichao
Received:
2020-05-19
Online:
2021-03-17
Published:
2021-03-05
Contact:
WANG Chengjun
通讯作者:
王成君
作者简介:
王成君(1985—),女,硕士,讲师,研究方向为相变储能材料。E-mail:基金资助:
CLC Number:
WANG Chengjun, SU Qiong, DUAN Zhiying, WANG Aijun, WANG Zhichao. Research progress of shape-stable composite phase change energy storage materials based on porous supports[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1483-1494.
王成君, 苏琼, 段志英, 王爱军, 王志超. 基于多孔支撑体的形状稳定复合相变储能材料的研究进展[J]. 化工进展, 2021, 40(3): 1483-1494.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-0855
1 | KOOHI-FAYEGH S, ROSEN M A. A review of energy storage types, applications and recent developments[J]. Journal of Energy Storage, 2020, 27: 101047. |
2 | 纪珺, 陈跃, 章学来, 等. 甘露醇水溶液低温储能相变材料的制备及热物性[J]. 化工进展, 2018, 37(3): 1111-1117. |
JI Jun, CHEN Yue, ZHANG Xuelai, et al. Preparation and thermophysical properties of mannitol aqueous solution PCMs for thermal energy storage[J]. Chemical Industry and Engineering Progress, 2018, 37(3): 1111-1117. | |
3 | 陈涛, 孙寒雪, 朱照祺, 等. (准)共晶系相变储能材料的研究进展[J]. 化工进展, 2019, 38(7): 3265-3273. |
CHEN T, SUN H X, ZHU Z Q, et al. Progress in studies of (quasi-)eutectic phase change energy storage materials[J]. Chemical Industry and Engineering Progress, 2019, 38(7): 3265-3273. | |
4 | FENG D, FENG Y, QIU L, et al. Review on nanoporous composite phase change materials: fabrication, characterization, enhancement and molecular simulation[J]. Renewable & Sustainable Energy Reviews, 2019, 109(7): 578-605. |
5 | HUANG X, CHEN X, LI A, et al. Shape-stabilized phase change materials based on porous supports for thermal energy storage applications[J]. Chemical Engineering Journal, 2019, 356(15): 641-661. |
6 | UMAIR M M, ZHANG Y, IQBAL K, et al. Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage—A review[J]. Applied Energy, 2018, 235: 846-873. |
7 | LI M, SHI J. Review on micropore grade inorganic porous medium based form stable composite phase change materials: preparation, performance improvement and effects on the properties of cement mortar[J]. Construction & Building Materials, 2019, 194: 287-310. |
8 | GAO H Y, WANG J J, CHEN X, et al. Nanoconfinement effects on thermal properties of nanoporous shape-stabilized composite PCMs: a review[J]. Nano Energy, 2018, 53: 769-797. |
9 | TONG X, LI N, ZENG M, et al. Organic phase change materials confined in carbon-based materials for thermal properties enhancement: recent advancement and challenges[J]. Renewable & Sustainable Energy Reviews, 2019, 108: 398-422. |
10 | 王静静, 徐小亮, 梁凯彦, 等. 多孔基定形复合相变材料传热性能提升研究进展[J]. 材料工程, 2020, 42(1): 26-38. |
WANG J J, XU X L, LIANG K Y, et al. Thermal conductivity enhancement of porous shape-stabilized composite phase change materials for thermal energy storage applications: a review[J]. Chinese Journal of Engineering[J]. 2020, 42(1): 26-38. | |
11 | 饶中浩, 汪双凤, 张艳来, 等. 相变材料热物理性质的分子动力学模拟[J]. 物理学, 2013, 62(5): 323-328. |
RAO Z H, WANG S F, ZHANG Y L, et al. Molecular dynamics simulation of thermal physical properties of phase transition materials[J]. Acta Physica Sinica, 2013, 62(5): 323-328. | |
12 | 陈颖, 姜庆辉, 辛集武, 等. 相变储能材料及其应用研究进展[J].材料工程, 2019, 47(7): 1-10. |
CHEN Y, JIANG Q H, XIN J W, et al. Research status and application of phase change materials[J]. Joural of Materials Engineering, 2019, 47(7): 1-10. | |
13 | LI R, ZHU J, ZHOU W, et al. Thermal properties of sodium nitrate-expanded vermiculite form-stable composite phase change materials[J]. Materials & Design, 2016, 104: 190-196. |
14 | SHEN C, LI X, YANG G, et al. Shape-stabilized hydrated salt/paraffin composite phase change materials for advanced thermal energy storage and management[J]. Chemical Engineering Journal, 2020, 385: 123958. |
15 | SHIH Y, WANG C, TSAI M, et al. Shape-stabilized phase change material/nylon composite based on recycled diatomite[J]. Materials Chemistry and Physics, 2020, 242: 122498. |
16 | YANG J, LI X, HAN S, et al. Air-dried, high-density graphene hybrid aerogels for phase change composites with exceptional thermal conductivity and shape stability[J]. Journal of Materials Chemistry A, 2016, 4(46): 18067-18074. |
17 | SHENG N, NOMURA T, ZHU C, et al. Cotton-derived carbon sponge as support for form-stabilized composite phase change materials with enhanced thermal conductivity[J]. Solar Energy Materials & Solar Cells, 2019, 192: 8-15. |
18 | WANG C J, LIANG W D, YANG Y Y, et al. Biomass carbon aerogels based shape-stable phase change composites with high light-to-thermal efficiency for energy storage[J]. Renewable Energy, 2020, 153: 182-192. |
19 | WANG J, ANDRIAMITANTSOA R S, ATINAFU D G, et al. A one-step in-situ assembly strategy to construct PEG@MOG-100-Fe shape-stabilized composite phase change material with enhanced storage capacity for thermal energy storage[J]. Chemical Physics Letters, 2018,695: 99-106. |
20 | ZHANG S, TAO Q, WANG Z, et al. Controlled heat release of new thermal storage materials: the case of polyethylene glycol intercalated into graphene oxide paper[J]. Journal of Materials Chemistry A, 2012, 22(38): 20166-20169. |
21 | YE S, ZHANG Q, HU D, et al. Core-shell-like structured graphene aerogel encapsulating paraffin: shape-stable phase change material for thermal energy storage[J]. Journal of Materials Chemistry A, 2015, 3(7): 4018-4025. |
22 | SINHA-RAY S, SAHU R P, YARIN A L. Nano-encapsulated smart tunable phase change materials[J]. Soft Matter, 2011, 7: 8823. |
23 | NOMURA T, ZHU C, SHENG N, et al. Shape-stabilized phase change composite by impregnation of octadecane into mesoporous SiO2[J]. Solar Energy Materials and Solar Cells, 2015, 143: 424-429. |
24 | GAO J, LV M, LU J, et al. Enhanced thermal properties of novel latent heat thermal storage material through confinement of stearic acid in meso-structured onion-like silica[J]. Journal of Metals, 2017. 69: 2785-2790. |
25 | WANG J, YANG M, LU Y, et al. Surface functionalization engineering driven crystallization behavior of polyethylene glycol confined in mesoporous silica for shape-stabilized phase change materials[J]. Nano Energy, 2015, 19: 78-87. |
26 | YU Y, XU J, WANG G, et al. Preparation of paraffin/SiO2 aerogel stable-stabilized phase change composites for high-humidity environment[J]. Journal of Materials Science, 2020, 55: 7-8. |
27 | LUAN Y, YANG M, MA Q, et al. Introduction of an organic acid phase changing material into metal-organic frameworks and the study of its thermal properties[J]. Journal of Materials Chemistry A, 2016, 4(20): 7641-7649. |
28 | WANG J J, HUANG X B, GAO H Y, et al. Construction of CNT@Cr-MIL-101-NH2 hybrid composite for shape-stabilized phase change materials with enhanced thermal conductivity[J]. Chemical Engineering Journal, 2018, 350: 164-172. |
29 | ATINAFU D G, CHANG S J, KIM K, et al. A novel enhancement of shape/thermal stability and energy-storage capacity of phase change materials through the formation of composites with 3D porous (3,6)-connected metal-organic framework[J]. Chemical Engineering Journal, 2020, 389: 124430. |
30 | UEMURA T, YANAI N, WATANABE S, et al. Unveiling thermal transitions of polymers in subnanometre pores[J]. Nature Communications, 2010, 1(7): 83. |
31 | ANDRIAMITANTSOA R S, DONG W, GAO H, et al. PEG encapsulated by porous triamide-linked polymers as support for solid-liquid phase change materials for energy storage[J]. Chemical Physics Letters, 2017, 671: 165-173. |
32 | LIU C, XU Z, SONG Y, et al. A novel shape-stabilization strategy for phase change thermal energy storage[J]. Journal of Materials Chemistry A, 2019, 7(14): 8194-8203. |
33 | FU X, LIU Y, JIANG X, et al. Form-stable phase change nanocomposites for thermal energy storage based on hypercrosslinked polymer nanospheres[J]. Thermochimica Acta, 2018, 665: 111-118. |
34 | WANG S, QIN J, ZHAO Y, et al. Ultrahigh surface areaN-doped hierarchically porous carbon for enhanced CO2 capture and electrochemical energy storage[J]. ChemSusChem, 2019, 12(15): 3541-3549. |
35 | WANG C, ZHAO Y, ZHOU L, et al. Mesoporous carbon matrix confinement synthesis of ultrasmall WO3 nanocrystals for lithium ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(43): 21550-21557. |
36 | WANG J, XIA Y, LIU Y, et al. Mass production of large-pore phosphorus-doped mesoporous carbon for fast-rechargeable lithium-ion batteries[J]. Energy Storage Materials, 2019, 22: 147-153. |
37 | WANG C, WAN X, DUAN L, et al. Molecular design strategy for ordered mesoporous stoichiometric metal oxide[J]. Angewandte Chemie: International Edition, 2019, 131(44): 16010-16015. |
38 | SHENG N, RAO Z, ZHU C, et al. Enhanced thermal performance of phase change material stabilized with textile-structured carbon scaffolds[J]. Solar Energy Materials and Solar Cells, 2020, 205: 110241. |
39 | LI Y Q, HUANG X B, LI Y, et al. Shape-stabilized phase-change materials supported by eggplant-derived porous carbon for efficient solar-to-thermal energy conversion and storage[J]. Sustainable Energy & Fuels, 2020, 4: 1764-1772. |
40 | BALANDIN A A. Thermal properties of graphene and nanostructured carbon materials[J]. Nature Materials, 2011, 10: 569-581. |
41 | POUDEL Y R, LI W. Synthesis, properties, and applications of carbon nanotubes filled with foreign materials: a review[J]. Mater Today Physics, 2018, 7: 7-34. |
42 | NIE C, TONG X, WU S, et al. Paraffin confined in carbon nanotubes as nano-encapsulated phase change materials: experimental and molecular dynamics studies[J]. RSC Advances, 2015, 5: 92812-92817. |
43 | QIAN T, LI J, FENG W, et al. Single-walled carbon nanotube for shape stabilization and enhanced phase change heat transfer of polyethylene glycol phase change material[J]. Energy Conversion and Management, 2017,143: 96-108. |
44 | ZHANG Q, LIU J. Sebacic acid/CNT sponge phase change material with excellent thermal conductivity and photo-thermal performance[J]. Solar Energy Materials and Solar Cells, 2017, 179: 217-222. |
45 | DU X, QIU J, DENG S, et al. Alkylated nanofibrillated cellulose/carbon nanotubes aerogels supported form-stable phase change composites with improved n-alkanes loading capacity and thermal conductivity[J]. ACS Applied Materials & Interfaces, 2020, 12(5): 5695-5703. |
46 | LIU L K, SU D, TANG Y J, et al. Thermal conductivity enhancement of phase change materials for thermal energy storage: a review[J]. Renewable & Sustainable Energy Reviews, 2016, 62: 305-317. |
47 | MU B, LI M. Synthesis of novel form-stable composite phase change materials with modified graphene aerogel for solar energy conversion and storage[J]. Solar Energy Materials & Solar Cells, 2019, 191: 466-475. |
48 | CHEN T, LIU C, MU P, et al. Fatty amines/graphene sponge form-stable phase change material composites with exceptionally high loading rates and energy density for thermal energy storage[J]. Chemical Engineering Journal, 2020, 382: 122831. |
49 | WU H, LI S, SHAO Y, et al. Melamine foam/reduced graphene oxide supported form-stable phase change materials with simultaneous shape memory property and light-to-thermal energy storage capability[J]. Chemical Engineering Journal, 2020, 379: 122373. |
50 | CHEN X, GAO H, YANG M, et al. Highly graphitized 3D network carbon for shape-stabilized composite PCMs with superior thermal energy harvesting[J]. Nano Energy, 2018, 49: 86-94. |
51 | ZHANG X, LIN Q, LUO H, et al. Three-dimensional graphitic hierarchical porous carbon/stearic acid composite as shape-stabilized phase change material for thermal energy storage[J]. Applied Energy, 2020, 260: 114278. |
52 | JIA X W, LI Q Y, AO C H, et al. High thermal conductive shape-stabilized phase change materials of polyethylene glycol/boron nitride@chitosan composites for thermal energy storage[J]. Composites Part A, 2020, 129: 105710. |
53 | LIN Y, JIA Y, ALVA G, et al. Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage[J]. Renewable & Sustainable Energy Reviews, 2018, 82: 2730-2742. |
54 | SARI A. Thermal energy storage characteristics of bentonite-based composite PCMs with enhanced thermal conductivity as novel thermal storage building materials[J]. Energy Conversion and Management, 2016, 117: 132-141. |
55 | WEHMEYER G, YABUKI T, MONACHON C, et al. Thermal diodes, regulators, and switches: physical mechanisms and potential applications[J]. Applied Physics Reviews, 2017, 4(4): 041304. |
56 | WEI Y, LI J, SUN F, et al. Leakage-proof phase change composites supported by biomass carbon aerogels from succulents[J]. Green Chemistry, 2018, 20(8): 1858-1865. |
57 | WANG W T, UMAIR M M, QIU J J, et al. Electromagnetic and solar energy conversion and storage based on Fe3O4-function alised graphene/phase change material nanocomposites[J]. Energy Conversion and Management, 2019, 196: 1299-1305. |
58 | ABDALKRIM S Y, YU H, WANG C, et al. Thermo and light-responsive phase change nanofibers with high energy storage efficiency for energy storage and thermally regulated on-off drug release devices[J]. Chemical Engineering Journal, 2019, 375: 121979. |
59 | ZHANG Q, HE Z, FANG X, et al. Experimental and numerical investigations on a flexible paraffin/fiber composite phase change material for thermal therapy mask[J]. Energy Storage Materials, 2017, 6: 36-45. |
[1] | LI Ning, LI Jinke, DONG Jinshan. Research and development of porous medium burner in ethylene cracking furnace [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 73-83. |
[2] | XU Maoyu, TAO Shuai, QI Cong, LIANG Lin. Start-up and temperature fluctuation of loop heat pipe with flat disk evaporator [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4531-4537. |
[3] | WANG Jiansheng, ZHANG Huipeng, LIU Xueling, FU Yuguo, ZHU Jianxiao. Analysis of flow and heat transfer characteristics in porous media reservoir [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4212-4220. |
[4] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Effects of graphene oxide/carbon nanotubes on the properties of several typical polymer materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3012-3028. |
[5] | MA Zhejie, ZHANG Wenli, ZHAO Xuankai, LI Ping. Progress on the influence of oxygen mass transfer resistance in PEMFC cathode catalyst layer [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2860-2873. |
[6] | WANG Guangyu, MENG Jinghui, ZHANG Kai. Simulation of intermittent microwave drying of coal slime and dielectric properties [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1779-1786. |
[7] | ZHANG Jianzhong, XU Sheng, FAN Jiashu, FEI Zhenyu, WANG Kun, HUANG Jian, CUI Fengbo, RAN Wenhua. Progress in characterization and analysis of glass fiber sizing [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 821-838. |
[8] | GUO Zhipeng, BU Xianbiao, LI Huashan, GONG Yulie, WANG Lingbao. Numerical simulation of heat extraction in single-well enhanced geothermal system based on thermal-hydraulic-chemical coupling model [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 711-721. |
[9] | YE Hao, HU Ping, WANG Ce, LIU Yong. Advances in research on magnetic fibrous electromagnetic wave absorbers [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5310-5321. |
[10] | YANG Zhuangzhuang, LIU Yongjun, LIU Xingshe, LIU Zhe, YANG Lu, ZHANG Aining. Coalescence separation of oily sludge and removal effect of organic substances from coal chemical wastewater [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 538-545. |
[11] | QIN Jian, LIU Tianxia, WANG Jian, LU Xing. Preparation and tribological properties of oleic acid modified graphene/molybdenum disulfide composite lubricating additives [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4973-4985. |
[12] | CAI Chuyue, FANG Xiaoming, LING Ziye, ZHANG Zhengguo. Research progress on thermal conductivity enhancement and form stability improvement of phase change thermal interface materials [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4907-4917. |
[13] | LI Wei, QI Dawei, YANG Jiongliang. Direct contact heat transfer process of vacuum exhaust system in wind tunnel [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4618-4624. |
[14] | ZHENG Jinbao, LI Chen. Research progress in improving hydrophobicity of starch-based packaging materials [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3089-3102. |
[15] | MA Jinwei, FANG Hao, CHEN Qianqian, CHEN Haifei, TONG Weiwei. Thermodynamic analysis and optimization of unglazed PV/T system based on enthalpy-entropy-exergy equilibrium [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1840-1847. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |