Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (3): 1495-1505.DOI: 10.16085/j.issn.1000-6613.2020-0806
• Materials science and technology • Previous Articles Next Articles
Received:
2020-05-12
Online:
2021-03-17
Published:
2021-03-05
Contact:
YANG Mengmeng
通讯作者:
杨蒙蒙
作者简介:
杨蒙蒙(1996—),女,硕士研究生,主要从事钾离子电池材料与界面的相关研究。E-mail:基金资助:
CLC Number:
YANG Mengmeng, YAO Weitang. Application of biomass carbonmaterial in anodematerial of potassium ion battery[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1495-1505.
杨蒙蒙, 姚卫棠. 生物质碳材料在钾离子电池负极材料中的应用[J]. 化工进展, 2021, 40(3): 1495-1505.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-0806
原材料 | 制备方法 | 电流密度/mA·g-1 | 循环次数 | 比容量/mA·h·g-1 | 参考文献 |
---|---|---|---|---|---|
脱水棉 | 酸处理,高温碳化 | 200 | 150 | 240 | [ |
橡木 | 两步碳化 | 20 | — | 223 | [ |
灵芝孢子粉 | 高温碳化 | 50 | 50 | 407 | [ |
土豆 | 两步碳化 | 100 | 100 | 247.8 | [ |
丝瓜 | 碱处理,高温碳化 | 100 | 200 | 150 | [ |
细菌纤维素 | 冷冻干燥,高温碳化 | 1000 | 2000 | 158 | [ |
甲壳素 | 高温碳化 | 55.8 | 100 | 215.2 | [ |
海产品废物 | 高温碳化 | 504 | 4000 | 180 | [ |
核桃隔膜 | 尿素氮掺杂,高温碳化 | 1000 | 1000 | 119.9 | [ |
竹子 | 硫掺杂,高温碳化 | 2000 | 300 | 203.8 | [ |
原材料 | 制备方法 | 电流密度/mA·g-1 | 循环次数 | 比容量/mA·h·g-1 | 参考文献 |
---|---|---|---|---|---|
脱水棉 | 酸处理,高温碳化 | 200 | 150 | 240 | [ |
橡木 | 两步碳化 | 20 | — | 223 | [ |
灵芝孢子粉 | 高温碳化 | 50 | 50 | 407 | [ |
土豆 | 两步碳化 | 100 | 100 | 247.8 | [ |
丝瓜 | 碱处理,高温碳化 | 100 | 200 | 150 | [ |
细菌纤维素 | 冷冻干燥,高温碳化 | 1000 | 2000 | 158 | [ |
甲壳素 | 高温碳化 | 55.8 | 100 | 215.2 | [ |
海产品废物 | 高温碳化 | 504 | 4000 | 180 | [ |
核桃隔膜 | 尿素氮掺杂,高温碳化 | 1000 | 1000 | 119.9 | [ |
竹子 | 硫掺杂,高温碳化 | 2000 | 300 | 203.8 | [ |
1 | ADEKOYA David, CHEN Hao, Huiying HOH, et al. Hierarchical Co3O4@N-doped carbon composite as an advanced anode material for ultrastable potassium storage[J]. ACS Nano, 2020, 14(4): 5027-5035. |
2 | ADEKOYA David, LI Meng, HANKEL Marlies, et al. Design of a 1D/2D C3N4/rGO composite as an anode material for stable and effective potassium storage[J]. Energy Storage Materials, 2020, 25: 495-501. |
3 | AN Yongling, TIAN Yuan, LI Yuan, et al. Green and tunable fabrication of graphene-like N-doped carbon on a 3D metal substrate as a binder-free anode for high-performance potassium-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(38): 21966-21975. |
4 | ZHANG Chengzhi, HAN Fei, WANG Fei, et al. Improving compactness and reaction kinetics of MoS2@C anodes by introducing Fe9S10 core for superior volumetric sodium/potassium storage[J]. Energy Storage Materials, 2020, 24: 208-219. |
5 | CHANG Xingqi, ZHOU Xiaolong, Xuewu OU, et al. Ultrahigh nitrogen doping of carbon nanosheets for high capacity and long cycling potassium ion storage[J]. Advanced Energy Materials, 2019, 9(47): 1902672. |
6 | YI Zhibin, LIU Ying, LI Yingzhi, et al. Flexible membrane consisting of MoP ultrafine nanoparticles highly distributed inside N and P codoped carbon nanofibers as high-performance anode for potassium-ion batteries[J]. Small, 2020, 16(2): 1905301. |
7 | CHU Jianhua, WANG Wei, YU Qiyao, et al. Open ZnSe/C nanocages: multi-hierarchy stress-buffer for boosting cycling stability in potassium-ion batteries[J]. Journal of Materials Chemistry A, 2020, 8(2): 779-788. |
8 | CUI Yongpeng, LIU Wei, WANG Xia, et al. Bioinspired mineralization under freezing conditions: an approach to fabricate porous carbons with complicated architecture and superior K+ storage performance[J]. ACS Nano, 2019, 13(10): 11582-11592. |
9 | FENG Wenting, CUI Yongpeng, LIU Wei, et al. Rigid-flexible coupling carbon skeleton and potassium-carbonate-dominated solid electrolyte interface achieving superior potassium-ion storage[J]. ACS Nano, 2020, 14(4): 4938-4949. |
10 | WU Xuan, CHEN Yanli, XING Zheng, et al. Advanced carbon-based anodes for potassium-ion batteries[J]. Advanced Energy Materials, 2019, 9(21): 1900343. |
11 | ZHANG Zili, JIA Baorui, LIU Luan, et al. Hollow multihole carbon bowls: a stress-release structure design for high-stability and high-volumetric-capacity potassium-ion batteries[J]. ACS Nano, 2019, 13(10): 11363-11371. |
12 | HAN Jun, ZHU Kunjie, LIU Pei, et al. N-doped CoSb@C nanofibers as a self-supporting anode for high-performance K-ion and Na-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(44): 25268-25273. |
13 | YANG Chao, Fan LYU, ZHANG Yelong, et al. Confined Fe2VO4 subset of nitrogen-doped carbon nanowires with internal void space for high-rate and ultrastable potassium-ion storage[J]. Advanced Energy Materials, 2019, 9(46): 1902674. |
14 | HE Bing, MAN Ping, ZHANG Qichong, et al. Conversion synthesis of self-standing potassium zinc hexacyanoferrate arrays as cathodes for high-voltage flexible aqueous rechargeable sodium-ion batteries[J]. Small, 2019, 15(52): 1905115. |
15 | HE Hanna, HUANG Dan, GAN Qingmeng, et al. Anion vacancies regulating endows MoSSe with fast and stable potassium ion storage[J]. ACS Nano, 2019, 13(10): 11843-11852. |
16 | YI Yuyang, SUN Zhongti, LI Chao, et al. Designing 3D biomorphic nitrogen-doped MoSe2/graphene composites toward high-performance potassium-ion capacitors[J]. Advanced Functional Materials, 2020, 30(4): 1903878. |
17 | HE Xiaodong, LIAO Jiaying, WANG Shuo, et al. From nanomelting to nanobeads: nanostructured SbxBi1-x alloys anchored in three-dimensional carbon frameworks as a high-performance anode for potassium-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(47): 27041-27047. |
18 | HONG Wanwan, ZHANG Yu, YANG Li, et al. Carbon quantum dot micelles tailored hollow carbon anode for fast potassium and sodium storage[J]. Nano Energy, 2019, 65: 104038. |
19 | HU Junxian, XIE Yangyang, ZHOU Xiaolu, et al. Engineering hollow porous carbon-sphere-confined MoS2 with expanded (002) planes for boosting potassium-ion storage[J]. ACS Applied Materials & Interfaces, 2020, 12(1): 1232-1240. |
20 | HUANG Huijuan, XU Rui, FENG Yuezhan, et al. Sodium/potassium-ion batteries: boosting the rate capability and cycle life by combining morphology, defect and structure engineering[J]. Advanced Materials, 2020, 32(8): 1904320. |
21 | Changheum JO, Jae Hyeon JO, CHOI Ji Ung, et al. Oxalate-based high-capacity conversion anode for potassium storage[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(9): 3743-3750. |
22 | Jisung LEE, KIM Seongseop, PARK Jae Hyuk, et al. A small-strain niobium nitride anode with ordered mesopores for ultra-stable potassium-ion batteries[J]. Journal of Materials Chemistry A, 2020, 8(6): 3119-3127. |
23 | LEI Yu, HAN Da, DONG Jiahui, et al. Unveiling the influence of electrode/electrolyte interface on the capacity fading for typical graphite-based potassium-ion batteries[J]. Energy Storage Materials, 2020, 24: 319-328. |
24 | LI Dongjun, CHENG Xiaolong, XU Rui, et al. Manipulation of 2D carbon nanoplates with a core-shell structure for high-performance potassium-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(34): 19929-19938. |
25 | LIU Meiqi, CHANG Limin, WANG Jie, et al. Hierarchical N-doped carbon nanosheets submicrospheres enable superior electrochemical properties for potassium ion capacitors[J]. Journal of Power Sources, 2020, 469: 228415. |
26 | 刘燕晨, 黄斌, 邵奕嘉, 等. 钾离子电池及其最新研究进展[J]. 化学进展, 2019, 31(9): 1329-1340. |
LIU Yanchen, HUANG Bin, SHAO Yijia, et al. Potassium-ion battery and its recent research progress[J]. Progress in Chemistry, 2019, 31(9): 1329-1340. | |
27 | 张鼎, 燕永旺, 史文静, 等. 钾离子电池研究进展[J]. 化工进展, 2018, 37(10): 3772-3780. |
ZHANG Ding, YAN Yongwang, SHI Wenjing, et al. Research progress of potassium-ion batteries[J]. Chemical Industry and Engineering Progress, 2018, 37(10): 3772-3780. | |
28 | LIN Xiuyi, LIU Yizhe, TAN Hong, et al. Advanced lignin-derived hard carbon for Na-ion batteries and a comparison with Li and K ion storage[J]. Carbon, 2020, 157: 316-323. |
29 | LIU Yuting, XIAO Yaoyao, LIU Fusheng, et al. Controlled building of mesoporous MoS2@MoO2-doped magnetic carbon sheets for superior potassium ion storage[J]. Journal of Materials Chemistry A, 2019, 7(47): 26818-26828. |
30 | LIU Zhiwei, HAN Kun, LI Ping, et al. Tuning metallic Co0.85Se quantum dots/carbon hollow polyhedrons with tertiary hierarchical structure for high-performance potassium ion batteries[J]. Nano-Micro Letters, 2019, 11(1): 96. |
31 | LIU Zhaomeng, WANG Jue, JIA Xinxin, et al. Graphene armored with a crystal carbon shell for ultrahigh-performance potassium ion batteries and aluminum batteries[J]. ACS Nano, 2019, 13(9): 10631-10642. |
32 | LU Gaofei, WANG Huanlei, ZHENG Yulong, et al. Metal-organic framework derived N-doped CNT@porous carbon for high-performance sodium- and potassium-ion storage[J]. Electrochimica Acta, 2019, 319: 541-551. |
33 | LU Jian, WANG Changlai, YU Haolei, et al. Oxygen/fluorine dual-doped porous carbon nanopolyhedra enabled ultrafast and highly stable potassium storage[J]. Advanced Functional Materials, 2019, 29(49): 1906126. |
34 | NAYLOR Andrew J, CARBONI Marco, VALYO Mario, et al. Interfacial reaction mechanisms on graphite anodes for K-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(49): 45636-45645. |
35 | YI Zheng, JIANG Song, TIAN Jie, et al. Amidation-dominated re-assembly strategy for single-atom design/nano-engineering: constructing Ni/S/C nanotubes with fast and stable K-storage[J]. Angewandte Chemie: International Edition, 2020, 59(16): 6459-6465. |
36 | QIAN Yong, JIANG Song, LI Yang, et al. In situ revealing the electroactivity of P—O and P—C bonds in hard carbon for high-capacity and long-life Li/K-ion batteries[J]. Advanced Energy Materials, 2019, 9(34): 1901676. |
37 | QIU Hailong, ZHAO Lina, ASIF Muhammad, et al. SnO2 nanoparticles anchored on carbon foam as a freestanding anode for high performance potassium-ion batteries[J]. Energy & Environmental Science, 2020, 13(2): 571-578. |
38 | QIU Zhenping, ZHAO KaiXiang, LIU Jiaming, et al. Nitrogen-doped mesoporous carbon as an anode material for high performance potassium-ion batteries[J]. Electrochimica Acta, 2020, 340: 135947. |
39 | RAJAGOPALAN Ranjusha, TANG Yougen, JI Xiaobo, et al. Advancements and challenges in potassium ion batteries: a comprehensive review[J]. Advanced Functional Materials, 2020, 30(12): 1909486. |
40 | RUAN Jiafeng, MO Fangjie, CHEN Ziliang, et al. Rational construction of nitrogen-doped hierarchical dual-carbon for advanced potassium-ion hybrid capacitors[J]. Advanced Energy Materials, 2020, 10(15): 1904045. |
41 | SANG Zhiyuan, SU Dong, WANG Jinsong, et al. Bi-continuous nanoporous carbon sphere derived from SiOC as high-performance anodes for PIBs[J]. Chemical Engineering Journal, 2020, 381: 122677. |
42 | ZHAO Yuanxin, REN Xiaochuan, XING Zhenjiang, et al. In situ formation of hierarchical bismuth nanodots/graphene nanoarchitectures for ultrahigh-rate and durable potassium-ion storage[J]. Small, 2020, 16(2): 1905789. |
43 | LIANG Shuaitong, SHI Haiting, YU Zhenjiang, et al. Uncovering the design principle of conversion-based anode for potassium ion batteries via dimension engineering[J]. Energy Storage Materials, 2021, 34: 536-544. |
44 | JIAN Zelang, LUO Wei, JI Xiulei. Carbon electrodes for K-ion batteries[J]. Journal of the American Chemical Society, 2015, 137(36): 11566-11569. |
45 | SUN Qing, LI Deping, CHENG Jun, et al. Nitrogen-doped carbon derived from pre-oxidized pitch for surface dominated potassium-ion storage[J]. Carbon, 2019, 155: 601-610. |
46 | TAN Huiteng, FENG Yuezhan, RUI Xianhong, et al. Metal chalcogenides: paving the way for high-performance sodium/potassium-ion batteries[J]. Small Methods, 2020, 4(1): 1900563. |
47 | TAO Lin, YANG Yunpeng, WANG Huanlei, et al. Sulfur-nitrogen rich carbon as stable high capacity potassium ion battery anode: performance and storage mechanisms[J]. Energy Storage Materials, 2020, 27: 212-225. |
48 | ZHANG Wenli, CAO Zhen, WANG Wenxi, et al. A site-selective doping strategy of carbon anodes with remarkable K-ion storage capacity[J]. Angewandte Chemie: International Edition, 2020, 59(11): 4448-4455. |
49 | TIAN Zhihong, CHUI Ningbo, LIAN Ruqian, et al. Dual anionic vacancies on carbon nanofiber threaded MoSSe arrays: a free-standing anode for high-performance potassium-ion storage[J]. Energy Storage Materials, 2020, 27: 591-598. |
50 | YANG Jinlin, JU Zhicheng, JIANG Yong, et al. Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage[J]. Advanced Materials, 2018, 30(4): 1700104. |
51 | WANG Bo, YUAN Fei, WANG Wei, et al. A carbon microtube array with a multihole cross profile: releasing the stress and boosting long-cycling and high-rate potassium ion storage[J]. Journal of Materials Chemistry A, 2019, 7(45): 25845-25852. |
52 | WANG Yaxiong, GAO Xiang, LI Lingchang, et al. High-capacity K-storage operational to-40 degrees C by using RGO as a model anode material[J]. Nano Energy, 2020, 67: 104248. |
53 | WANG Yanning, LI Yinshi. Ab initio prediction of two-dimensional Si3C enabling high specific capacity as an anode material for Li/Na/ K-ion batteries[J]. Journal of Materials Chemistry A, 2020, 8(8): 4274-4282. |
54 | WANG Zhiyuan, DONG Kangze, WANG Dan, et al. Constructing N-doped porous carbon confined FeSb alloy nanocomposite with Fe-N-C coordination as a universal anode for advanced Na/K-ion batteries[J]. Chemical Engineering Journal, 2020, 384: 123327. |
55 | WU Xuan, CHEN Yanli, XING Zheng, et al. Advanced carbon-based anodes for potassium-ion batteries[J]. Advanced Energy Materials, 2019, 9(21): 1900343. |
56 | ZHANG Jingyuan, CUI Peixin, GU Ying, et al. Encapsulating carbon-coated MoS2 nanosheets within a nitrogen-doped graphene network for high-performance potassium-ion storage[J]. Advanced Materials Interfaces, 2019, 6(22): 1901066. |
57 | HE Xiaodong, LIAO Jiaying, TANG Zhongfeng, et al. Highly disordered hard carbon derived from skimmed cotton as a high-performance anode material for potassium-ion batteries[J]. Journal of Power Sources, 2018, 396: 533-541. |
58 | S J Richard PRABAKAR, HAN Su Cheol, PARK Chunguk, et al. Spontaneous formation of interwoven porous channels in hard-wood-based hard-carbon for high-performance anodes in potassium-ion batteries[J]. Journal of the Electrochemical Society, 2017, 164(9): 2012-2016. |
59 | YANG Mengmeng, DAI Jinyan, HE Mingyi, et al. Biomass-derived carbon from Ganoderma lucidum spore as a promising anode material for rapid potassium-ion storage[J]. Journal of Colloid and Interface Science, 2020, 567: 256-263. |
60 | CAO Wei, ZHANG Erjin, WANG Jue, et al. Potato derived biomass porous carbon as anode for potassium ion batteries[J]. Electrochimica Acta, 2019, 293: 364-370. |
61 | LI Hongyan, CHENG Zheng, ZHANG Qing, et al. Bacterial-derived, compressible, and hierarchical porous carbon for high-performance potassium-ion batteries[J]. Nano Letters, 2018, 18(11): 7407-7413. |
62 | WU Zhenrui, WANG Liping, HUANG Jie, et al. Loofah-derived carbon as an anode material for potassium ion and lithium ion batteries[J]. Electrochimica Acta, 2019, 306: 446-453. |
63 | SHAN Jie, WANG Jianjiao, KIEKENS Paul, et al. Effect of co-activation of petroleum coke and artemisia hedinii on potassium loss during activation and its promising application in anode material of potassium-ion batteries[J]. Solid State Sciences, 2019, 92: 96-105. |
64 | HAO Rui, LAN Hao, KUANG Chengwei, et al. Superior potassium storage in chitin-derived natural nitrogen-doped carbon nanofibers[J]. Carbon, 2018, 128: 224-230. |
65 | CHEN Chaoji, WANG Zhenggang, ZHANG Bao, et al. Nitrogen-rich hard carbon as a highly durable anode for high-power potassium-ion batteries[J]. Energy Storage Materials, 2017, 8: 161-168. |
66 | GAO Chenglin, WANG Qing, LUO Shaohua, et al. High performance potassium-ion battery anode based on biomorphic N-doped carbon derived from walnut septum[J]. Journal of Power Sources, 2019, 415: 165-171. |
67 | TIAN Sheng, GUAN Dongcai, LU Jing, et al. Synthesis of the electrochemically stable sulfur-doped bamboo charcoal as the anode material of potassium-ion batteries[J]. Journal of Power Sources, 2020, 448: 227572. |
[1] | ZHANG Ding, YAN Yongwang, SHI Wenjing, ZHAO Xiaomin, LIU Shibin, WANG Xiaomin. Research progress of potassium-ion batteries [J]. Chemical Industry and Engineering Progress, 2018, 37(10): 3772-3780. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |