Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (9): 4573-4586.DOI: 10.16085/j.issn.1000-6613.2022-2012
• Energy processes and technology • Previous Articles Next Articles
LIAO Zhixin(), LUO Tao, WANG Hong, KONG Jiajun, SHEN Haiping(), GUAN Cuishi, WANG Cuihong, SHE Yucheng
Received:
2022-10-27
Revised:
2022-11-18
Online:
2023-09-28
Published:
2023-09-15
Contact:
SHEN Haiping
廖志新(), 罗涛, 王红, 孔佳骏, 申海平(), 管翠诗, 王翠红, 佘玉成
通讯作者:
申海平
作者简介:
廖志新(1985—),男,博士,研究方向为重油加工。E-mail:liaozhixin.ripp@sinopec.com。
基金资助:
CLC Number:
LIAO Zhixin, LUO Tao, WANG Hong, KONG Jiajun, SHEN Haiping, GUAN Cuishi, WANG Cuihong, SHE Yucheng. Application and progress of solvent deasphalting technology[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4573-4586.
廖志新, 罗涛, 王红, 孔佳骏, 申海平, 管翠诗, 王翠红, 佘玉成. 溶剂脱沥青技术应用与进展[J]. 化工进展, 2023, 42(9): 4573-4586.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-2012
伊拉克 | |||
伊拉克 | |||
炼厂 | 规模/ | 开工时间 | 工艺特点 |
---|---|---|---|
锦西炼厂 | 20 30 | 1965年 1985年 | C3/两段/临界回收 |
大连七厂 | 60 | 1974年 | C3~C4混合溶剂/两段 |
吉化 | 20 | 1987年 | C4/一段 |
天津石化 | 60 | 1992年 | C4/两段 |
九江石化 | 50 | 2004年 | C4/一段 |
大榭石化 | 160 | 2022年 | C4/两段 |
炼厂 | 规模/ | 开工时间 | 工艺特点 |
---|---|---|---|
锦西炼厂 | 20 30 | 1965年 1985年 | C3/两段/临界回收 |
大连七厂 | 60 | 1974年 | C3~C4混合溶剂/两段 |
吉化 | 20 | 1987年 | C4/一段 |
天津石化 | 60 | 1992年 | C4/两段 |
九江石化 | 50 | 2004年 | C4/一段 |
大榭石化 | 160 | 2022年 | C4/两段 |
1 | HE Lin, LIN Feng, LI Xingang, et al. Interfacial sciences in unconventional petroleum production: From fundamentals to applications[J]. Chemical Society Reviews, 2015, 44(15): 5446-5494. |
2 | PATIL Prafulla D, KOZMINSKI Mike, PETERSON John. Pilot plant study on continuous propane deresining of atmospheric crude cylinder stock[J]. Fuel, 2019, 235: 17-22. |
3 | 徐文俊. 采用组合工艺加工辽河超稠油减黏渣油的研究[D]. 北京: 中国石油大学(北京), 2020. |
XU Wenjun. Study on the combined process in visbreaking residue refinery of Liaohe super heavy oil[D]. Beijing: China University of Petroleum (Beijing), 2020. | |
4 | YU Chuanbo, ZHANG Linzhou, GUO Xiuying, et al. Association model for nickel and vanadium with asphaltene during solvent deasphalting[J]. Energy & Fuels, 2015, 29(3): 1534-1542. |
5 | MORANTES Lina R, PERCEBOM Ana M, Enrique MEJÍA-OSPINO. On the molecular basis of aggregation and stability of Colombian asphaltenes and their subfractions[J]. Fuel, 2019, 241: 542-549. |
6 | MAGOMEDOV R N, PRIPAKHAILO A V, MARYUTINA T A. Effect of iron oxide nanoparticle addition on the efficiency of solvent deasphalting of oil residue with subcritical pentane[J]. Russian Journal of Physical Chemistry B, 2020, 14(7): 1098-1102. |
7 | DU Pingan, REN Mannian, JIANG Dan, et al. An experimental study on optimization utilization of deasphalted oil[J]. Fuel Processing Technology, 2012, 99: 64-68. |
8 | TONG Yujun, SHEN Benxian, FANG Weifeng, et al. Optimization of vacuum resid solvent deasphalting to produce bright stock and hard asphalt[J]. Petroleum Science and Technology, 2018, 36(1): 55-61. |
9 | LONG Jian, SHEN Benxian, LING Hao, et al. Novel solvent deasphalting process by vacuum residue blending with coal tar[J]. Industrial & Engineering Chemistry Research, 2011, 50(19): 11259-11269. |
10 | LIN Feng, XU Yuming, NELSON Richard. Pilot evaluation of an aqueous/nonaqueous hybrid bitumen extraction process for mineable oil sands[J]. Minerals Engineering, 2019, 131: 241-248. |
11 | 郝龙帅. 以辽河稠油减压渣油制备高芳烃环保橡胶油的研究[D]. 北京: 中国石油大学(北京), 2018. |
HAO Longshuai. Study on the preparation of high aromatic environmental-friendly rubber oil from vacuum residue of Liaohe heavy oil[D]. Beijing: China University of Petroleum (Beijing), 2018. | |
12 | NICCUM Phillip K, NORTHUP Aldrich H. Processing heavy ends: Part I[J]. Petroleum Technology Quarterly, 2008, 13(4): 75-76, 79-80, 83-84. |
13 | HILBERT Timothy, BICOLOR Michael, VIDANKA Ajit, et al. Bright stock production from low severity residue deaspalting: JP2019504161[P]. 2019-02-14. |
14 | MAGOMEDOV R N, POPOVA A Z, MARYUTINA T A, et al. Current status and prospects of demetallization of heavy petroleum feedstock[J]. Petroleum Chemistry, 2015, 55(6): 423-443. |
15 | 崔德春, 徐庆虎, 熊亮, 等. 油砂沥青改质工艺流程优化探讨[J]. 炼油技术与工程, 2021, 51(2): 5-9. |
CUI Dechun, XU Qinghu, XIONG Liang, et al. Discussion on process optimization of oil sands bitumen modification[J]. Petroleum Refinery Engineering, 2021, 51(2): 5-9. | |
16 | GRAY Murray R. Upgrading oilsands bitumen and heavy oil[M]. Edmonton: The University of Alberta Press, 2015: 449, 459. |
17 | SPEIGHT James G. Heavy and extra heavy oil upgrading technologies[M]. Amsterdam: Elsevier, 2013: 582-602. |
18 | 宁爱民, 沈本贤, 刘纪昌, 等. 常压闪蒸-溶剂脱沥青组合工艺提高塔河原油加工中液体收率的研究[J]. 石油炼制与化工, 2014, 45(11): 74-79. |
NING Aimin, SHEN Benxian, LIU Jichang, et al. Improving liquid yield of Tahe crude by atomspheric flash-solvent deasphalting combined process[J]. Petroleum Processing and Petrochemicals, 2014, 45(11): 74-79. | |
19 | MOTAGHI M, SHREE K, KRISHNAMURTHY S. Consider new methods for bottom of the barrel processing-Part 2[J]. Hydrocarbon Processing, 2010, 89(3): 55-58. |
20 | ANAND Subramanian, 刘杰. 三产品ROSE渣油超临界溶剂脱沥青技术用来生产道路沥青或阳极焦[C]//北京: 中国石油学会石油炼制学术年会, 2010: 64-68. |
ANAND Subramanian, LIU Jie. Three product ROSE residue supercritical solvent deasphalting technology is used to produce road asphalt or anode coke[C]//Beijing: Annual Meeting of Petroleum Refining of China Petroleum Society, 2010: 64-68. | |
21 | GOVINDHAJANNAN J, LEFEBVRE H G. Process and apparatus for two-stage deasphalting: US10703994[P]. 2020-07-07. |
22 | RAMIREZ-CORREDORES M. The science and technology of unconventional oils[M]. London: Academic Press, 2017: 502-524. |
23 | CASTANEDA L C, MUNOZ J A D, ANCHEYTA J. Combined process schemes for upgrading of heavy petroleum[J]. Fuel, 2012, 100: 110-127. |
24 | 王祖纲, 杨勇, 肖家治. 重油加工脱碳技术的发展现状与趋势[J]. 世界石油工业, 2021, 28(2): 53-62. |
WANG Zugang, YANG Yong, XIAO Jiazhi. Development and prospect of decarburization technology in heavy oil processing[J]. World Petroleum Industry, 2021, 28(2): 53-62. | |
25 | 张董鑫, 李京辉, 徐鲁燕. 溶剂脱沥青技术研究进展[J]. 当代石油石化, 2018, 26(12): 34-42. |
ZHANG Dongxin, LI Jinghui, XU Luyan. Research progress on solvent deasphalting technology[J]. Petroleum & Petrochemical Today, 2018, 26(12): 34-42. | |
26 | 柴志杰, 任满年. 沥青生产与应用技术问答[M]. 2版. 北京: 中国石化出版社, 2015. |
CHAI Zhijie, REN Mannian. Questions and answers on asphalt production and application technology[M]. 2nd ed. Beijing: China Petrochemical Press, 2015. | |
27 | FAN Meng, SUN Xuewen, XU Zhiming, et al. Softening point: An indicator of asphalt granulation behavior in the selective asphaltene extraction (SELEX-asp) process[J]. Energy & Fuels, 2011, 25(7): 3060-3067. |
28 | SHI Quan, ZHAO Suoqi, ZHOU Yasong, et al. Development of heavy oil upgrading technologies in China[J]. Reviews in Chemical Engineering, 2019, 36(1): 1-19. |
29 | 徐春明, 赵锁奇, 卢春喜, 等. 重质油梯级分离新工艺的工程基础研究[J]. 化工学报, 2010, 61(9): 2393-2400. |
XU Chunming, ZHAO Suoqi, LU Chunxi, et al. Engineering basics of heavy oil deep stage separating process[J]. CIESC Journal, 2010, 61(9): 2393-2400. | |
30 | REFA K O. Integrated process for solvent deasphalting and gas phase oxidative desulfurization of residue oil: EP3870677[P]. 2021-09-01. |
31 | BOURANE Abdennour, SHAFI Raheel, SAYED Essam, et al. Integrated solvent deasphalting, hydrotreating and steam pyrolysis process for direct processing of a crude oil: US9284502[P]. 2016-03-15. |
32 | BOURANE Abdennour, SHAFI Raheel, SAYED Essam, et al. Integrated solvent deasphalting, hydrotreating and steam pyrolysis process for direct processing of a crude oil: US13865062[P]. 2013-09-12. |
33 | GILLIS Daniel, VANWEES Mark, ZIMMERMAN Paul, et al. Upgrading residues to maximize distillate yields with UOP UniflexTM process[J]. Journal of the Japan Petroleum Institute, 2010, 53(1): 33-41. |
34 | BROWN S H, VAUGHAN G A, HANKS P L, et al. Upgrading challenged feeds and pitches produced therefrom: US16707575[P]. 2020-06-11. |
35 | BALDASSARI Mario C, MUKHERJEE Ujjal K, Olsen ANN-MARIE, et al. Integration of residue hydrocracking and hydrotreating: EP14775041[P]. 2016-01-20. |
36 | MARQUES Joao, DREILLARD Matthieu, FEUGNET Frédéric, et al. Improved method for converting residues incorporating deep hydroconversion steps and a deasphalting step: EP18814905[P]. 2020-10-28. |
37 | ADAMS Jeramie J. Asphaltene adsorption, a literature review[J]. Energy & Fuels, 2014, 28(5): 2831-2856. |
38 | HOSSEINPOUR Negahdar, MORTAZAVI Yadollah, BAHRAMIAN Alireza, et al. Enhanced pyrolysis and oxidation of asphaltenes adsorbed onto transition metal oxides nanoparticles towards advanced in situ combustion EOR processes by nanotechnology[J]. Applied Catalysis A: General, 2014, 477: 159-171. |
39 | FONG Shirley Y, MONTOYA SÁNCHEZ Natalia, DE KLERK Arno. Olefin saturation using asphaltenes as a hydrogen source[J]. Energy & Fuels, 2020, 34(4): 4534-4543. |
40 | SUN Shiyuan, MENG Fandong. Study on solvent deasphalting process for upgrading of hydrocracking unconverted oil[J]. Industrial & Engineering Chemistry Research, 2021, 60(1): 652-658. |
41 | RUBIN-PITEL S B, KAR K, FRUCHEY K S. Fluxed deasphalter rock fuel oil blend component oils: US15390775[P]. 2020-02-04. |
42 | BROWN S H, CUNNINGHAM B A, SMILEY R J, et al. Reside upgrading with reduced severity FCC processing: EP18718292[P]. 2020-02-12. |
43 | 蔡智. 溶剂脱沥青-脱油沥青气化-脱沥青油催化裂化组合工艺研究及应用[J]. 当代石油石化, 2007, 15(4): 16-20, 49. |
CAI Zhi. The research and application of solvent deasphalting-deoiling asphalt gasification-deasphalting oil FCC group technology[J]. Petroleum & Petrochemical Today, 2007, 15(4): 16-20, 49. | |
44 | AL-GHAMDI M S, BAHAMMAM B, OSAIMI N AL, et al. Process and system for conversion of crude oil to petrochemicals and fuel products integrating solvent deasphalting of vacuum residue: US16555808[P]. 2020-04-23. |
45 | 袁晓云, 赵飞, 魏广春, 等. 溶剂脱沥青-催化裂化工艺的优化组合及其应用[J]. 炼油技术与工程, 2011, 41(5): 6-9. |
YUAN Xiaoyun, ZHAO Fei, WEI Guangchun, et al. Optimized integration of solvent deasphalting-FCC process and application[J]. Petroleum Refinery Engineering, 2011, 41(5): 6-9. | |
46 | 孙学文, 郭秀颖. 采用组合工艺提高辽河减压渣油轻油收率[J]. 石油炼制与化工, 2015, 46(6): 12-16. |
SUN Xuewen, GUO Xiuying. Improving light oil yield from Liaohe vaccum residue using combined processes[J]. Petroleum Processing and Petrochemicals, 2015, 46(6): 12-16. | |
47 | 孔海平, 赵军, 李雪同, 等. 催化裂化油浆利用新技术研究[J]. 天然气与石油, 2011, 29(3): 35-37. |
KONG Haiping, ZHAO Jun, LI Xuetong, et al. A new technology for FCC slurry oil utilization[J]. Natural Gas and Oil, 2011, 29(3): 35-37. | |
48 | 张兆前, 李正, 朱根权, 等. 催化裂化油浆利用的技术进展[J]. 化工进展, 2007, 26(11): 1559-1563. |
ZHANG Zhaoqian, LI Zheng, ZHU Genquan, et al. Technical progress of utilization of fluid catalytic cracking slurry[J]. Chemical Industry and Engineering Progress, 2007, 26(11): 1559-1563. | |
49 | 刘以红, 宋艳茹. 催化裂化油浆在生产优质道路沥青中的应用[J]. 石油化工高等学校学报, 2004, 17(3): 58-61, 72. |
LIU Yihong, SONG Yanru. Production of paving asphalt by solvent deasphalting of vacuum residue and RCC decant oil[J]. Journal of Petrochemical Universities, 2004, 17(3): 58-61, 72. | |
50 | KENDALL Sugrach, SARA Kegreen, ANJANEA Escovali, et al. Deasphalting and gasification of integrated residual oil: JP2018533880[P]. 2020-07-08. |
51 | RAMACHANDRAN P P, KUMAR D S, DEVI P, et al. Process for conversion of residue employing de-asphalting and delayed coking: EP18160854[P]. 2019-02-20. |
52 | 胡艳芳, 秦如意. 溶剂脱沥青-延迟焦化-加氢处理组合工艺[J]. 广州化工, 2012, 40(13): 106-108. |
HU Yanfang, QIN Ruyi. Combined process of solvent deasphalting-delayed coking-hydrotreating[J]. Guangzhou Chemical Industry, 2012, 40(13): 106-108. | |
53 | LEE Jung Moo, SHIN Sangcheol, Seonju AHN, et al. Separation of solvent and deasphalted oil for solvent deasphalting process[J]. Fuel Processing Technology, 2014, 119: 204-210. |
54 | 张翠侦, 田义斌, 王凯, 等. 中海油某减压渣油综合利用的研究[J]. 石油炼制与化工, 2018, 49(3): 85-88. |
ZHANG Cuizhen, TIAN Yibin, WANG Kai, et al. Study on comprehensive utilization of CNOOC vacuum residue[J]. Petroleum Processing and Petrochemicals, 2018, 49(3): 85-88. | |
55 | 张雅琳, 张占全, 王燕, 等. 费托合成油和石油基油加工产品对比分析[J]. 化工进展, 2018, 37(10): 3781-3787. |
ZHANG Yalin, ZHANG Zhanquan, WANG Yan, et al. Comparative analysis of products from Fischer-Tropsch oil and petroleum based oil[J]. Chemical Industry and Engineering Progress, 2018, 37(10): 3781-3787. | |
56 | LEE Stephen K, ROSENBAUM John M, HAO Yalin, et al. Premium lubricant base stocks by hydroprocessing[M]//Springer handbook of petroleum technology. Cham: Springer, 2017, 4728(5): 1015-1042. |
57 | 杜平安. 脱沥青油高效利用双向组合工艺研究[D]. 上海: 华东理工大学, 2011. |
DU Ping’an. Combination technologies of bidirectional utilization of deasphalting oil[D]. Shanghai: East China University of Science and Technology, 2011. | |
58 | Mustafa AL-SABAWI, SETH Deepyaman, BRUIJN Theo De. Effect of modifiers in n-pentane on the supercritical extraction of Athabasca bitumen[J]. Fuel Processing Technology, 2011, 92(10): 1929-1938. |
59 | 齐万振. 辽河混合稠油减压渣油制备光亮油的研究[D]. 北京: 中国石油大学(北京), 2020. |
QI Wanzhen. Research on the preparation of bright stock from Liaohe mixed heavy oil vacuum residue[D]. Beijing: China University of Petroleum (Beijing), 2020. | |
60 | 黄灏, 傅徐钢, 易发军, 等. 溶剂脱沥青工艺优化浅谈[J]. 润滑油, 2010, 25(4): 61-64. |
HUANG Hao, FU Xugang, YI Fajun, et al. A discussion about the optimization of solvent deasphalting process[J]. Lubricating Oil, 2010, 25(4): 61-64. | |
61 | 于洋, 杨磊. 溶剂组成对SDA装置脱沥青油的影响[J]. 河南化工, 2020, 37(7): 32-35. |
YU Yang, YANG Lei. Effect of solvent composition on deasphalted oil in SDA unit[J]. Henan Chemical Industry, 2020, 37(7): 32-35. | |
62 | GO Kang Seok, KWON Eun Hee, KIM Kwang Ho, et al. Effect of ionic surfactants on improving deasphalting selectivity in a nonpolar system[J]. Energy & Fuels, 2016, 30(3): 2076-2083. |
63 | MAGOMEDOV R N, PRIPAKHAYLO A V, MARYUTINA T A, et al. Role of solvent deasphalting in the modern oil refining practice and trends in the process development[J]. Russian Journal of Applied Chemistry, 2019, 92(12): 1634-1648. |
64 | KUMAR Rajeev, CHEBROLU Seetaram, VOOLAPALLI R K, et al. A solvent deasphalting dearomatization (SD-A2) process for heavy oil upgradation[J]. Fuel, 2022, 307: 121923. |
65 | MAGOMEDOV R N, PRIPAKHAILO A V, MARYUTINA T A. Effect of the phase state of the solvent on solvent deactivation of tar by n-pentane[J]. Chemistry and Technology of Fuels and Oils, 2019, 54(6): 721-732. |
66 | 徐庆虎, 崔德春, 纪钦洪, 等. 溶剂对油砂沥青改质溶剂脱沥青影响研究[J]. 炼油技术与工程, 2021, 51(3): 9-12. |
XU Qinghu, CUI Dechun, JI Qinhong, et al. Influence of solvent on deasphalting unit in oil sands bitumen upgrader[J]. Petroleum Refinery Engineering, 2021, 51(3): 9-12. | |
67 | KOSEOGLU O R. Integrated enhanced solvent deasphalting and coking system to produce petroleum green coke: US16773351[P]. 2021-06-01. |
68 | LIN Feng, PANG Chongjun John. Impact of a hybrid bitumen extraction process on the destabilization of resulting bitumen froth emulsion diluted with heptane[J]. Minerals Engineering, 2020, 145: 106069. |
69 | NI Hongxing, HSU Chang Samuel, LEE Peter, et al. Supercritical carbon dioxide extraction of petroleum on kieselguhr[J]. Fuel, 2015, 141: 74-81. |
70 | LODI Leandro, CÁRDENAS CONCHA Viktor Oswaldo, MEDINA Lilian Carmen, et al. An experimental study of a pilot plant deasphalting process in CO2 supercritical[J]. Petroleum Science and Technology, 2015, 33(4): 481-486. |
71 | MAGOMEDOV Rustam N, PRIPAKHAYLO Artem V, MARYUTINA Tatiana A. Solvent demetallization of heavy petroleum feedstock using supercritical carbon dioxide with modifiers[J]. Journal of Supercritical Fluids, 2017, 119: 150-158. |
72 | HE Lin, LIN Feng, LI Xingang, et al. Effect of solvent addition on bitumen-air bubble attachment in process water[J]. Chemical Engineering Science, 2015, 137: 31-39. |
73 | 李飞飞, 迟春红, 王俊美. 溶剂脱沥青工艺在当今炼厂的作用及发展趋势[J]. 化学工程师, 2022, 36(3): 73-76, 72. |
LI Feifei, CHI Chunhong, WANG Junmei. Trend in the process development and role of solvent deasphalting in refinery nowadays[J]. Chemical Engineer, 2022, 36(3): 73-76, 72. | |
74 | PRIPAKHAYLO A V, MAGOMEDOV R N, MARYUTINA T A. Separation of heavy oil into narrow fractions by supercritical fluid extraction using a CO2-toluene mixture[J]. Journal of Analytical Chemistry, 2019, 74(4): 401-409. |
75 | COSSEY Heidi L, GUIGARD Selma E, UNDERWOOD Eleisha, et al. Supercritical fluid extraction of bitumen using chemically modified carbon dioxide[J]. Journal of Supercritical Fluids, 2019, 154: 104599. |
76 | Soo Ik IM, SHIN Sangcheol, PARK Jun Woo, et al. Selective separation of solvent from deasphalted oil using CO2 for heavy oil upgrading process based on solvent deasphalting[J]. Chemical Engineering Journal, 2018, 331: 389-394. |
77 | OVALLES Cesar, ROGEL Estrella, VIEN Janie, et al. In-situ upgrading of heavy crude oils via solvent deasphalting using of nickel oxide nanoparticles as asphaltene co-precipitants[J]. Fuel, 2022, 313: 122707. |
78 | HOSSEINPOUR Negahdar, KHODADADI Abbas ALI, BAHRAMIAN Alireza, et al. Asphaltene adsorption onto acidic/basic metal oxide nanoparticles toward in situ upgrading of reservoir oils by nanotechnology[J]. Langmuir, 2013, 29(46): 14135-14146. |
79 | SUN M, ZHANG Z, SHAIKH S K. Non-solvent crude oil heavy oil stream deasphalting process: US17169014[P]. 2021-05-27. |
80 | HILL James, ARATO Claudio. Method of treating heavy oil: US13822818[P]. 2013-10-24. |
81 | ZHAO Yingxian, WEI Feng. Simultaneous removal of asphaltenes and water from water-in-bitumen emulsion: Ⅰ. Fundamental development[J]. Fuel Processing Technology, 2008, 89(10): 933-940. |
82 | ZHAO Yingxian, WEI Feng. Simultaneous removal of asphaltenes and water from water-in-bitumen emulsion: Ⅱ. Application feasibility[J]. Fuel Processing Technology, 2008, 89(10): 941-948. |
83 | 岳堃. 重油溶剂脱沥青萃取塔内件开发[D]. 北京: 北京化工大学, 2015. |
YUE Kun. The development of solvent deasphalting extraction column internals worked with heavy oil[D]. Beijing: Beijing University of Chemical Technology, 2015. | |
84 | 费维扬. 萃取塔设备研究和应用的若干新进展[J]. 化工学报, 2013, 64(1): 44-51. |
FEI Weiyang. Progresses of study and application on extraction columns[J]. CIESC Journal, 2013, 64(1): 44-51. | |
85 | 范召运, 蔡卫滨, 杨蕴辉, 等. 导向格栅规整填料萃取塔的操作性能[J]. 化工学报, 2015, 66(5): 1792-1797. |
FAN Zhaoyun, CAI Weibin, YANG Yunhui, et al. Operation properties of oriented grid packing extractor[J]. CIESC Journal, 2015, 66(5): 1792-1797. | |
86 | 蔡卫滨, 钱建兵, 王玉军, 等. 舌形板波纹规整填料萃取塔的操作性能[J]. 高校化学工程学报, 2017, 31(2): 308-315. |
CAI Weibin, QIAN Jianbing, WANG Yujun, et al. Operation performance of an SBW stack packed extraction column[J]. Journal of Chemical Engineering of Chinese Universities, 2017, 31(2): 308-315. | |
87 | 方斌. 干气密封在溶剂脱沥青装置溶剂泵中的应用[J]. 石油化工技术与经济, 2018, 34(2): 46-50. |
FANG Bin. Application of dry gas seal in solvent pump of solvent deasphalting unit[J]. Techno-Economics in Petrochemicals, 2018, 34(2): 46-50. | |
88 | 陈万新. 溶剂脱沥青装置扩能改造运行情况分析[J]. 齐鲁石油化工, 2022, 50(1): 45-49. |
CHEN Wanxin. Operation situation analysis of capacity expansion and transformation on the solvent deasphalting unit[J]. Qilu Petrochemical Technology, 2022, 50(1): 45-49. |
[1] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[2] | XU Jiaheng, LI Yongsheng, LUO Chunhuan, SU Qingquan. Optimization of methanol steam reforming process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 41-46. |
[3] | LI Shilin, HU Jingze, WANG Yilin, WANG Qingji, SHAO Lei. Research progress in separation and extraction of high value components by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 420-429. |
[4] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[5] | YANG Jianping. PSE for feedstock consumption reduction in reaction system of HPPO plant [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 21-32. |
[6] | HE Meijin. Application and development trend of molecular management in separation technology in petrochemical field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 260-266. |
[7] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[8] | QIAN Sitian, PENG Wenjun, ZHANG Xianming. Comparative analysis of forming cyclic oligomers via PET melt polycondensation and cyclodepolymerization [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4808-4816. |
[9] | SHI Tianxi, SHI Yonghui, WU Xinying, ZHANG Yihao, QIN Zhe, ZHAO Chunxia, LU Da. Effects of Fe2+ on the performance of Anammox EGSB reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5003-5010. |
[10] | CHANG Yinlong, ZHOU Qimin, WANG Qingyue, WANG Wenjun, LI Bogeng, LIU Pingwei. Research progress in high value chemical recycling of waste polyolefins [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3965-3978. |
[11] | PAN Yichang, ZHOU Rongfei, XING Weihong. Advanced microporous membranes for efficient separation of same-carbon-number hydrocarbon mixtures: State-of-the-art and challenges [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3926-3942. |
[12] | ZHOU Longda, ZHAO Lixin, XU Baorui, ZHANG Shuang, LIU Lin. Advances in electrostatic-cyclonic coupling enhanced multiphase media separation research [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3443-3456. |
[13] | CHEN Xiangli, LI Qianqian, ZHANG Tian, LI Biao, LI Kangkang. Research progress on self-healing oil/water separation membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3600-3610. |
[14] | LOU Baohui, WU Xianhao, ZHANG Chi, CHEN Zhen, FENG Xiangdong. Advances in nanofluid for CO2 absorption and separation [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3802-3815. |
[15] | GU Shiya, DONG Yachao, LIU Linlin, ZHANG Lei, ZHUANG Yu, DU Jian. Design and optimization of pipeline system for carbon capture considering intermediate nodes [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2799-2808. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |