Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (6): 2999-3011.DOI: 10.16085/j.issn.1000-6613.2022-1421
• Materials science and technology • Previous Articles Next Articles
LIU Zhanjian1(), FU Yuxin1, REN Lina1, ZHANG Xiguang1, YUAN Zhongtao3, YANG Nan1, WANG Huaiyuan1,2
Received:
2022-07-28
Revised:
2022-08-22
Online:
2023-06-29
Published:
2023-06-25
Contact:
LIU Zhanjian
刘战剑1(), 付雨欣1, 任丽娜1, 张曦光1, 袁中涛3, 杨楠1, 汪怀远1,2
通讯作者:
刘战剑
作者简介:
刘战剑(1990—),男,副教授,硕士生导师,研究方向为仿生界面材料制备及应用。E-mail:liuzhanjian2012@163.com。
基金资助:
CLC Number:
LIU Zhanjian, FU Yuxin, REN Lina, ZHANG Xiguang, YUAN Zhongtao, YANG Nan, WANG Huaiyuan. New research progress of superhydrophobic coatings in the field of anti-corrosion and anti-scaling[J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2999-3011.
刘战剑, 付雨欣, 任丽娜, 张曦光, 袁中涛, 杨楠, 汪怀远. 超疏水涂层在防腐阻垢领域研究进展[J]. 化工进展, 2023, 42(6): 2999-3011.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1421
1 | MOHAMED A M, ABDULLAH A M, YOUNAN N A. Corrosion behavior of superhydrophobic surfaces: A review[J]. Arabian Journal of Chemistry, 2015, 8(6): 749-765. |
2 | 杨晓娜. Q235碳钢表面超疏水自修复防腐蚀涂层的制备及其性能研究[D]. 长春: 吉林大学, 2021. |
YANG Xiaona. Preparation and properties of self-healing superhydrophobic coating on carbon steel Q235[D]. Changchun: Jilin University, 2021. | |
3 | 陈茜茜. 耐蚀阻垢聚合物基功能涂层的制备与研究[D]. 大庆: 东北石油大学, 2019. |
CHEN Q Q. Preparation and research of corrosion resistant and antiscaling polymer-based functional coatings[D]. Daqing: Northeast Petroleum University, 2019. | |
4 | QIU Xingwu, ZHANG Yunpeng, HE Li, et al. Microstructure and corrosion resistance of AlCrFeCuCo high entropy alloy[J]. Journal of Alloys and Compounds, 2013, 549: 195-199. |
5 | KARKI V, SINGH M. Investigation of corrosion mechanism in Type 304 stainless steel under different corrosive environments: A SIMS study[J]. International Journal of Mass Spectrometry, 2017, 421: 51-60. |
6 | CLOSE D, STEIN N, ALLAIN N, et al. Electrodeposition, microstructural characterization and anticorrosive properties of Zn-Mn alloy coatings from acidic chloride electrolyte containing 4-hydroxybenzaldehyde and ammonium thiocyanate[J]. Surface and Coatings Technology, 2016, 298: 73-82. |
7 | 赵彦, 章立新, 高明, 等. 循环冷却水系统除碳酸钙污垢的研究进展[J]. 精细化工, 2020, 37(12): 2447-2456. |
ZHAO Yan, ZHANG Lixin, GAO Ming, et al. Research progress of removing calcium carbonate fouling in circulating cooling water system[J]. Fine Chemicals, 2020, 37(12): 2447-2456. | |
8 | 王洋洋, 刘庆旺, 范振忠, 等. 油田常用阻垢剂的研究进展[J]. 石油化工, 2021, 50(11): 1222-1228. |
WANG Yangyang, LIU Qingwang, FAN Zhenzhong, et al. Research progress of common scale inhibitors in oilfield[J]. Petrochemical Technology, 2021, 50(11): 1222-1228. | |
78 | ZHU Mingliang, QIAN Huijuan, YUAN Ruixia, et al. EDTA interfacial chelation Ca2+ incorporates superhydrophobic coating for scaling inhibition of CaCO3 in petroleum industry[J]. Petroleum Science, 2021, 18(3): 951-961. |
79 | ZHU Yanji, LI Hongwei, ZHU Mingliang, et al. Dynamic and active antiscaling via scale inhibitor pre-stored superhydrophobic coating[J]. Chemical Engineering Journal, 2021, 403: 126467. |
80 | LIU Zhanjian, ZHANG Congyuan, JING Jing, et al. Bristle worm inspired ultra-durable superhydrophobic coating with repairable microstructures and anti-corrosion/scaling properties[J]. Chemical Engineering Journal, 2022, 436: 135273. |
9 | CUI Mingjun, REN Siming, QIN Songlv, et al. Processable poly(2-butylaniline)/hexagonal boron nitride nanohybrids for synergetic anticorrosive reinforcement of epoxy coating[J]. Corrosion Science, 2018, 131: 187-198. |
10 | ZHANG Tianzhan, WANG Yuefeng, ZHANG Feilong, et al. Bio-inspired superhydrophilic coatings with high anti-adhesion against mineral scales[J]. NPG Asia Materials, 2018, 10(3): e471. |
11 | MARMUR A. The lotus effect: Superhydrophobicity and metastability[J]. Langmuir, 2004, 20(9): 3517-3519. |
12 | ENSIKAT H J, DITSCHE-KURU P, NEINHUIS C, et al. Superhydrophobicity in perfection: The outstanding properties of the lotus leaf[J]. Beilstein Journal of Nanotechnology, 2011, 2: 152-161. |
13 | YOUNG T. An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London, 1805, 95: 65-87. |
14 | WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28(8): 988-994. |
15 | CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40: 546-551. |
16 | BAI Yuxing, ZHANG Haiping, SHAO Yuanyuan, et al. Recent progresses of superhydrophobic coatings in different application fields: An overview[J]. Coatings, 2021, 11(2): 116. |
17 | NGUYEN-TRI P, TRAN H N, PLAMONDON C O, et al. Recent progress in the preparation, properties and applications of superhydrophobic nano-based coatings and surfaces: A review[J]. Progress in Organic Coatings, 2019, 132: 235-256. |
18 | ZHANG Dawei, WANG Luntao, QIAN Hongchang, et al. Superhydrophobic surfaces for corrosion protection: A review of recent progresses and future directions[J]. Journal of Coatings Technology and Research, 2016, 13(1): 11-29. |
19 | KRISHNAN A, KRISHNAN A V, AJITH A, et al. Influence of materials and fabrication strategies in tailoring the anticorrosive property of superhydrophobic coatings[J]. Surfaces and Interfaces, 2021, 25: 101238. |
20 | ZANG Dongmian, ZHU Ruiwen, WU Chunxiao, et al. Fabrication of stable superhydrophobic surface with improved anticorrosion property on magnesium alloy[J]. Scripta Materialia, 2013, 69(8): 614-617. |
21 | LIU Tao, CHEN Shougang, CHENG Sha, et al. Corrosion behavior of super-hydrophobic surface on copper in seawater[J]. Electrochimica Acta, 2007, 52(28): 8003-8007. |
22 | QIAN Huijuan, ZHU Mingliang, SONG Hua, et al. Anti-scaling of superhydrophobic poly(vinylidene fluoride) composite coating: Tackling effect of carbon nanotubes[J]. Progress in Organic Coatings, 2020, 142: 105566. |
23 | BENECKE Jan, ROZOVA Jelena, ERNST Mathias. Anti-scale effects of select organic macromolecules on gypsum bulk and surface crystallization during reverse osmosis desalination[J]. Separation and Purification Technology, 2018, 198: 68-78. |
24 | LIN Lu, JIANG Wenbin, XU Xuesong, et al. A critical review of the application of electromagnetic fields for scaling control in water systems: Mechanisms, characterization, and operation[J]. Npj Clean Water, 2020, 3: 25. |
25 | CHENG Y H, ZOU Y, CHENG L, et al. Effect of the microstructure on the properties of Ni-P deposits on heat transfer surface[J]. Surface and Coatings Technology, 2009, 203(12): 1559-1564. |
26 | WANG Yan, WANG Linlin, LIU Mingyan. Antifouling and enhancing pool boiling by TiO2 coating surface in nanometer scale thickness[J]. AIChE Journal, 2007, 53(12): 3062-3076. |
27 | 陈敬中. 现代晶体化学[M]. 北京: 科学出版社, 2016. |
CHEN Jingzhong. Modern crystal chemistry[M]. Beijing: Science Press, 2016. | |
28 | 谢彩锋, 丘泰球, 陆海勤, 等. 超声作用下碳酸钙晶体的形态变化[J]. 华南理工大学学报(自然科学版), 2007, 35(4): 62-66. |
XIE Caifeng, QIU Taiqiu, LU Haiqin, et al. Morphology variation of calcium carbonate crystal irradiated by ultrasonic[J]. Journal of South China University of Technology (Natural Science Edition), 2007, 35(4): 62-66. | |
29 | LOSTE E, PARK R J, WARREN J, et al. Precipitation of calcium carbonate in confinement[J]. Advanced Functional Materials, 2004, 14(12): 1211-1220. |
30 | 林培滋, 黄世煜, 初惠萍. 温度对碳酸钙结垢过程的影响[J]. 石油与天然气化工, 1999, 28(2): 128-129, 73. |
LIN Peizi, HUANG Shiyu, CHU Huiping. The effect of temperatures on calcium carbonate scale formation[J]. Chemical Engineering of Oil and Gas, 1999, 28(2): 128-129, 73. | |
31 | 李云钊, 宋兴福, 孙玉柱, 等. 反应-萃取-结晶过程制备碳酸钙的晶型转变与结晶机理[J]. 化工学报, 2015, 66(10): 4007-4015. |
LI Yunzhao, SONG Xingfu, SUN Yuzhu, et al. Polymorph transformation and formation mechanism of calcium carbonate during reactive extraction-crystallization process[J]. CIESC Journal, 2015, 66(10): 4007-4015. | |
32 | CAI Yongwei, LIU Mingyan, HUI Longfei. CaCO3 fouling on microscale-nanoscale hydrophobic titania-fluoroalkylsilane films in pool boiling[J]. AIChE Journal, 2013, 59(7): 2662-2678. |
33 | LIU Zhanjian, ZHANG Congyuan, ZHANG Xiguang, et al. Durable superhydrophobic PVDF/FEVE/GO@TiO2 composite coating with excellent anti-scaling and UV resistance properties[J]. Chemical Engineering Journal, 2021, 411: 128632. |
34 | EJENSTAM Lina, OVASKAINEN Louise, Irene RODRIGUEZ-MEIZOSO, et al. The effect of superhydrophobic wetting state on corrosion protection—the AKD example[J]. Journal of Colloid and Interface Science, 2013, 412: 56-64. |
35 | BOINOVICH L B, EMELYANENKO K A, DOMANTOVSKY A G, et al. Laser tailoring the surface chemistry and morphology for wear, scale and corrosion resistant superhydrophobic coatings[J]. Langmuir, 2018, 34(24): 7059-7066. |
36 | CAI Yongwei, QUAN Xuejun, LI Gang, et al. Anticorrosion and scale behaviors of nanostructured ZrO2-TiO2 coatings in simulated geothermal water[J]. Industrial & Engineering Chemistry Research, 2016, 55(44): 11480-11494. |
37 | LI Hao, YU Sirong, HAN Xiangxiang, et al. A stable hierarchical superhydrophobic coating on pipeline steel surface with self-cleaning, anticorrosion, and anti-scaling properties[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 503: 43-52. |
38 | MOMEN G, FARZANEH M. Facile approach in the development of icephobic hierarchically textured coatings as corrosion barrier[J]. Applied Surface Science, 2014, 299: 41-46. |
39 | WANG Peng, ZHANG Dun, LU Zhou. Advantage of super-hydrophobic surface as a barrier against atmospheric corrosion induced by salt deliquescence[J]. Corrosion Science, 2015, 90: 23-32. |
40 | SPARKS B J, HOFF E F, XIONG L, et al. Superhydrophobic hybrid inorganic-organic thiol-ene surfaces fabricated via spray-deposition and photopolymerization[J]. ACS Applied Materials & Interfaces, 2013, 5(5): 1811-1817. |
41 | LEE M W, AN S, LATTHE S S, et al. Electrospun polystyrene nanofiber membrane with superhydrophobicity and superoleophilicity for selective separation of water and low viscous oil[J]. ACS Applied Materials & Interfaces, 2013, 5(21): 10597-10604. |
42 | YANG Zhen, LIU Xianping, TIAN Yanling. Hybrid laser ablation and chemical modification for fast fabrication of bio-inspired super-hydrophobic surface with excellent self-cleaning, stability and corrosion resistance[J]. Journal of Bionic Engineering, 2019, 16(1): 13-26. |
43 | SHE Zuxin, LI Qing, WANG Zhongwei, et al. Researching the fabrication of anticorrosion superhydrophobic surface on magnesium alloy and its mechanical stability and durability[J]. Chemical Engineering Journal, 2013, 228: 415-424. |
44 | KANG Zhixin, ZHANG Junyi, NIU Lei. A one-step hydrothermal process to fabricate superhydrophobic hydroxyapatite coatings and determination of their properties[J]. Surface and Coatings Technology, 2018, 334: 84-89. |
45 | CHU J H, SUN G X, TONG L B, et al. Facile one-step hydrothermal fabrication of allium giganteum-like superhydrophobic coating on Mg alloy with self-cleaning and anti-corrosion properties[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 617: 126370. |
46 | XIANG Yuxin, HE Yi, TANG Wenwen, et al. Fabrication of robust Ni-based TiO2 composite@TTOS superhydrophobic coating for wear resistance and anti-corrosion[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629: 127394. |
47 | XIN Guoqiang, WU Congyi, LIU Weinan, et al. Anti-corrosion superhydrophobic surfaces of Al alloy based on micro-protrusion array structure fabricated by laser direct writing[J]. Journal of Alloys and Compounds, 2021, 881: 160649. |
48 | WANG Guowei, SONG Dan, QIAO Yanxin, et al. Developing super-hydrophobic and corrosion-resistant coating on magnesium-lithium alloy via one-step hydrothermal processing[J]. Journal of Magnesium and Alloys, 2021. |
49 | ZHANG Binbin, WANG Jia, ZHANG Jie. Bioinspired one step hydrothermal fabricated superhydrophobic aluminum alloy with favorable corrosion resistance[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 589: 124469. |
50 | ZHOU Xin, KONG Junhua, SUN Jiaotong, et al. Stable superhydrophobic porous coatings from hybrid ABC triblock copolymers and their anticorrosive performance[J]. ACS Applied Materials & Interfaces, 2017, 9(35): 30056-30063. |
51 | RAMAN A, JAYAN J S, DEERAJ B D, et al. Electrospun nanofibers as effective superhydrophobic surfaces: A brief review[J]. Surfaces and Interfaces, 2021, 24: 101140. |
52 | YANG Na, LI Jicheng, BAI Ningning, et al. One step phase separation process to fabricate superhydrophobic PVC films and its corrosion prevention for AZ91D magnesium alloy[J]. Materials Science and Engineering: B, 2016, 209: 1-9. |
53 | HAO Zhentao, CHEN Chuchu, SHEN Ting, et al. Slippery liquid-infused porous surface via thermally induced phase separation for enhanced corrosion protection[J]. Journal of Polymer Science, 2020, 58(21): 3031-3041. |
54 | XIANG Tengfei, DING Shibing, LI Cheng, et al. Effect of current density on wettability and corrosion resistance of superhydrophobic nickel coating deposited on low carbon steel[J]. Materials & Design, 2017, 114: 65-72. |
55 | ZHAO Yunyan, XING Cuijuan, ZHANG Zhiming, et al. Superhydrophobic polyaniline/polystyrene micro/nanostructures as anticorrosion coatings[J]. Reactive and Functional Polymers, 2017, 119: 95-104. |
56 | CUI Mengke, XU Changcheng, SHEN Yongqian, et al. Electrospinning superhydrophobic nanofibrous poly(vinylidene fluoride)/stearic acid coatings with excellent corrosion resistance[J]. Thin Solid Films, 2018, 657: 88-94. |
57 | YIN Xingxing, MU Peng, WANG Qingtao, et al. Superhydrophobic ZIF-8-based dual-layer coating for enhanced corrosion protection of Mg alloy[J]. ACS Applied Materials & Interfaces, 2020, 12(31): 35453-35463. |
58 | HAN Bin, WANG Huaiyuan, YUAN Sicheng, et al. Durable and anti-corrosion superhydrophobic coating with bistratal structure prepared by ambient curing[J]. Progress in Organic Coatings, 2020, 149: 105922. |
59 | SEBASTIAN Divine, YAO Chunwei, NIPA Lutfun, et al. Corrosion behavior and mechanical properties of a nanocomposite superhydrophobic coating[J]. Coatings, 2021, 11(6): 652. |
60 | LI Xuewu, YAN Jiayang, YU Teng, et al. Versatile nonfluorinated superhydrophobic coating with self-cleaning, anti-fouling, anti-corrosion and mechanical stability[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 642: 128701. |
61 | DONG Kousuo, BIAN Linsheng, LIU Yuchen, et al. Superhydrophobic coating based on organic/inorganic double component adhesive and functionalized nanoparticles with good durability and anti-corrosion for protection of galvanized steel[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 640: 128360. |
62 | LI Bingfeng, XUE Shuaiya, MU Peng, et al. Robust self-healing graphene oxide-based superhydrophobic coatings for efficient corrosion protection of magnesium alloys[J]. ACS Applied Materials & Interfaces, 2022, 14(26): 30192-30204. |
63 | ZHANG Ping, LIU Yuan, ZHANG Nan, et al. A novel attach-and-release mineral scale control strategy: Laboratory investigation of retention and release of scale inhibitor on pipe surface[J]. Journal of Industrial and Engineering Chemistry, 2019, 70: 462-471. |
64 | HAN Yong, ZHANG Chuanxin, ZHU Lin, et al. Effect of alternating electromagnetic field and ultrasonic on CaCO3 scale inhibitive performance of EDTMPS[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 99: 104-112. |
65 | OLDANI V, DEL NEGRO R, BIANCHI C L, et al. Surface properties and anti-fouling assessment of coatings obtained from perfluoropolyethers and ceramic oxides nanopowders deposited on stainless steel[J]. Journal of Fluorine Chemistry, 2015, 180: 7-14. |
66 | 李茂东, 代陈林, 乔越, 等. 一种新型中央空调绿色水处理剂的性能[J]. 腐蚀与防护, 2017, 38(9): 721-726. |
LI Maodong, DAI Chenlin, QIAO Yue, et al. Performance of a newly green water treatment agent for central air conditioner[J]. Corrosion & Protection, 2017, 38(9): 721-726. | |
67 | WANG Chijia, WANG Huaiyuan, HU Yue, et al. Anti-corrosive and scale inhibiting polymer-based functional coating with internal and external regulation of TiO2 whiskers[J]. Coatings, 2018, 8(1): 29. |
68 | 王亦工, 陈华辉, 裴嵩峰, 等. 水性无机硅酸锌防腐涂料的研究进展[J]. 腐蚀科学与防护技术, 2006, 18(1): 41-45. |
WANG Yigong, CHEN Huahui, PEI Songfeng, et al. Development of waterborne inorganic zinc silicate anticorrosion coatings[J]. Corrosion Science and Protection Technology, 2006, 18(1): 41-45. | |
69 | SUN Wei, GONG Qianqian, WANG Wenjie, et al. Research on the reliability of narrow-band frequency-sweep electromagnetic descaling instrument[M]//Intelligent computing in smart grid and electrical vehicles. Berlin, Heidelberg: Springer, 2014: 420-425. |
70 | ZHAO Yan, ZHANG Lixin, ZHAO Xin, et al. Research on descaling characteristics and simulation calculation of a coaxial high-frequency electronic descaling device[J]. Water, 2021, 13(6): 789. |
71 | 吴坤湖, 朱立群, 李卫平, 等. 地热水环境中PTFE/PPS复合涂层的阻垢特性[J]. 复合材料学报, 2010, 27(5): 47-54. |
WU Kunhu, ZHU Liqun, LI Weiping, et al. Anti-scaling characterization of PTFE/PPS composite coating in the geothermal water environment[J]. Acta Materiae Compositae Sinica, 2010, 27(5): 47-54. | |
72 | KE Huizhen, FELDMAN Emma, GUZMAN Plinio, et al. Electrospun polystyrene nanofibrous membranes for direct contact membrane distillation[J]. Journal of Membrane Science, 2016, 515: 86-97. |
73 | YIN Xiaoli, YU Sirong, BI Xiaojian, et al. Robust superhydrophobic 1D Ni3S2 nanorods coating for self-cleaning and anti-scaling[J]. Ceramics International, 2019, 45(18): 24618-24624. |
74 | SOJOUDI H, NEMANI S K, MULLIN K M, et al. Micro-/nanoscale approach for studying scale formation and developing scale-resistant surfaces[J]. ACS Applied Materials & Interfaces, 2019, 11(7): 7330-7337. |
75 | JIANG Wei, HE Jian, XIAO Feng, et al. Preparation and antiscaling application of superhydrophobic anodized CuO nanowire surfaces[J]. Industrial & Engineering Chemistry Research, 2015, 54(27): 6874-6883. |
76 | LI Hao, YU Sirong, HU Jinhui, et al. Modifier-free fabrication of durable superhydrophobic electrodeposited Cu-Zn coating on steel substrate with self-cleaning, anti-corrosion and anti-scaling properties[J]. Applied Surface Science, 2019, 481: 872-882. |
77 | QIAN Huijuan, ZHU Yanji, WANG Huaiyuan, et al. Preparation and antiscaling performance of superhydrophobic poly(phenylene sulfide)/polytetrafluoroethylene composite coating[J]. Industrial & Engineering Chemistry Research, 2017, 56(44): 12663-12671. |
[1] | SONG Weitao, SONG Huiping, FAN Zhenlian, FAN Biao, XUE Fangbin. Research progress of fly ash in anti-corrosion coatings [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4894-4904. |
[2] | WANG Xin, WANG Bingbing, YANG Wei, XU Zhiming. Anti-scale and anti-corrosion properties of PDA/PTFE superhydrophobic coating on metal surface [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4315-4321. |
[3] | CHEN Xiangli, LI Qianqian, ZHANG Tian, LI Biao, LI Kangkang. Research progress on self-healing oil/water separation membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3600-3610. |
[4] | HE Yang, LI Siying, LI Chuanqiang, YUAN Xiaoya, ZHENG Xuxu. Anticorrosion performance of thermal reduction graphene oxide /epoxy resin composite coating [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1983-1994. |
[5] | HU Jinjian, LI Long, DONG Zijing. Application of carbon nanomaterials in PU yarn-based flexible strain sensors [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 872-883. |
[6] | GU Haiyang, WANG Dong, ZONG Yongzhong, FU Shaohai. Preparation and property of tanning sludge based biomass flame retardant coating protein for cotton fabric [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 641-649. |
[7] | GUAN Yongxin, ZHOU Qiang, CHEN Liyi, LI Hui, LIU Xiaonan. Research progress of organic silicon and organic fluorine low surface energy antifouling coatings [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5286-5298. |
[8] | LU Tao, HU Jiayi, XU Cheng, HU Xinlin, GUO Qingyang, LI Meng. Facile synthesis of superhydrophobic sponge for efficient separation of oil/water mixture [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5353-5362. |
[9] | XIN Hua, PENG Qi, LI Yangfan, ZHANG Yan, CHEN Yue, LI Xinqi. Preparation and self-repairing performance of microcapsules with fluoropolyurethane dimethacrylate as the core [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5406-5413. |
[10] | ZHANG Xiao, WANG Zhanyi, WU Zhiying, LIU Yuting, LIU Zilong, LIU Xinjia, ZHANG Sui’an. Coating modification technology of fracturing proppant [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 386-400. |
[11] | LIU Yang, ZHAO Heng, LI Qian, XIN Hu, LI Xingtao. Research progress of perfluoropolyether polymers and functional composites [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 321-335. |
[12] | ZHAN Xun, CHEN Jian, YANG Zhaozhe, WU Guomin, KONG Zhenwu, SHEN Kuizhong. Progress on superhydrophobic materials from nanocellulose [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4303-4313. |
[13] | LI Xiang, GE Wujie, MA Xianguo, PENG Gongchang. Research progress on countermeasures for microcrack-induced capacity degradation of Ni-rich cathode materials [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4277-4287. |
[14] | ZHU Xuedan, YAO Yali, MA Lili, WANG Jiaxin, YANG Jie, PENG Lei, HE Jinmei, QU Mengnan. Progress in preparation and application of superhydrophobic materials based on polyvinyl chloride [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3676-3688. |
[15] | HE Meiying, YUE Xuejie, ZHANG Tao, QIU Fengxian. Infrared radiation control principle and its material research progress in thermal management application [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3719-3730. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |