Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (2): 872-883.DOI: 10.16085/j.issn.1000-6613.2022-0766

• Materials science and technology • Previous Articles     Next Articles

Application of carbon nanomaterials in PU yarn-based flexible strain sensors

HU Jinjian(), LI Long(), DONG Zijing   

  1. School of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, Shaanxi, China
  • Received:2022-04-27 Revised:2022-07-05 Online:2023-03-13 Published:2023-02-25
  • Contact: LI Long

碳纳米材料在PU纱线基柔性应变传感器中的应用

胡锦健(), 李龙(), 董子靖   

  1. 西安工程大学纺织科学与工程学院,陕西 西安 710048
  • 通讯作者: 李龙
  • 作者简介:胡锦健(1996—),男,硕士研究生,研究方向为智能纺织品。E-mail: 3325332463@qq.com
  • 基金资助:
    陕西省教育厅科研计划(20JK0652)

Abstract:

PU yarn-based flexible strain sensors have the advantages of light weight and softness, good air permeability, excellent mechanical properties, good sensing performance, cheap and easy to obtain, etc., but there are problems of nonlinear relationship between sensitivity and strain range and hysteresis. In this paper, the composition of the carbon nanomaterial/PU yarn-based flexible strain sensor was firstly introduced and the influence mechanism of each component on the sensor performance was analyzed. On this basis, according to the different preparation methods of PU sensor yarns, the research progress of three types of sensors of homogeneous PU yarn, coated PU yarn and structured PU yarn was reviewed. It was pointed out that a reasonable selection of spinning raw material addition, spinning draft ratio, coating binder, thickness ratio of conductive skin layer to non-conductive core layer, effective coverage ratio of conductive skin layer to non-conductive core layer, multi-dimensional conductive network, and novel yarn structure and yarn. New molding technology can improve the sensing performance of PU conductive yarn. Finally, the problems existing in carbon nanomaterials/PU yarn-based flexible strain sensors were analyzed, and the future prospects for high-performance PU basic yarns, high-quality carbon nanomaterials, new processing and integration technologies, and basic conditions that should be met in the process of development and application were analyzed. The key development directions of this paper were prospected in order to provide a reference for the development of high-performance yarn-based flexible strain sensors.

Key words: carbon nanomaterials, PU yarn, spinning, coating, flexible strain sensors

摘要:

聚氨酯(PU)纱线基柔性应变传感器具有质轻柔软、透气性好、力学性能优异、传感性能良好、廉价易得等优点,但存在灵敏度与应变范围的非线性关系以及滞后性的问题。本文首先介绍了碳纳米材料/PU纱线基柔性应变传感器的构成,并分析了各构成部分对传感器性能的影响机理。在此基础上,根据PU传感纱线制备方式的不同,分别对均质PU纱类、涂层PU纱类和结构PU纱类三类传感器的研究进展进行了综述,指出选择合理的纺丝原料添加量、纺丝牵伸比、涂覆黏合剂、导电皮层与非导电芯层厚度比、导电皮层对非导电芯层有效包覆率、多维导电网络以及新颖的纱线结构、纱线成型新技术可提高PU导电纱线的传感性能。最后,分析了碳纳米材料/PU纱线基柔性应变传感器存在的问题,对高性能PU基础纱线、高品质碳纳米材料、新型加工及集成技术、研制和应用过程中应满足的基本条件等未来的重点发展方向进行了展望,以期为开发高性能纱线基柔性应变传感器提供参考。

关键词: 碳纳米材料, 聚氨酯纱, 纺丝, 涂层, 柔性应变传感器

CLC Number: 

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd