Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (4): 2160-2170.DOI: 10.16085/j.issn.1000-6613.2022-1152
• Resources and environmental engineering • Previous Articles Next Articles
WANG Yu1,2(), YU Guangwei1,3(), JIANG Ruqing1, LI Changjiang1,4, LIN Jiajia1,2, XING Zhenjiao1
Received:
2022-06-20
Revised:
2022-07-27
Online:
2023-05-08
Published:
2023-04-25
Contact:
YU Guangwei
王玉1,2(), 余广炜1,3(), 江汝清1, 黎长江1,4, 林佳佳1,2, 邢贞娇1
通讯作者:
余广炜
作者简介:
王玉(1996—),男,硕士研究生,主要研究方向为固体废弃物资源化利用与污染物控制。E-mail:yuwang@iue.ac.cn。
基金资助:
CLC Number:
WANG Yu, YU Guangwei, JIANG Ruqing, LI Changjiang, LIN Jiajia, XING Zhenjiao. Adsorption of ciprofloxacin hydrochloride by biochar from food waste digestate residues[J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2160-2170.
王玉, 余广炜, 江汝清, 黎长江, 林佳佳, 邢贞娇. 餐厨厌氧沼渣生物炭吸附盐酸环丙沙星[J]. 化工进展, 2023, 42(4): 2160-2170.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1152
抗生素种类 | 分子式 | 分子量 | 离子性 | 分子结构 |
---|---|---|---|---|
盐酸环丙沙星 | C17H19ClFN3O3 | 367.8 | 阴离子 |
抗生素种类 | 分子式 | 分子量 | 离子性 | 分子结构 |
---|---|---|---|---|
盐酸环丙沙星 | C17H19ClFN3O3 | 367.8 | 阴离子 |
沼渣生物炭 | 热解产率/% | 工业分析(质量分数)/% | 元素分析(质量分数)/% | H/C | N/C | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
灰分 | 挥发分 | 固定碳 | N | C | H | S | O | ||||
DR | — | 48.05 | 49.41 | 2.54 | 3.49 | 22.72 | 3.22 | 0.39 | 22.13 | 1.70 | 0.13 |
DR-400 | 65.97 | 69.34 | 26.42 | 4.25 | 1.20 | 13.01 | 1.30 | 0.41 | 14.75 | 1.20 | 0.08 |
DR-500 | 64.97 | 70.27 | 22.62 | 7.11 | 1.27 | 13.85 | 1.25 | 0.51 | 12.85 | 1.08 | 0.08 |
DR-600 | 62.27 | 71.86 | 19.45 | 8.69 | 0.91 | 13.28 | 0.89 | 0.52 | 12.55 | 0.80 | 0.06 |
DR-700 | 52.23 | 81.71 | 16.00 | 2.29 | 0.34 | 8.22 | 1.09 | 0.65 | 8.00 | 1.59 | 0.04 |
DR-800 | 51.57 | 84.03 | 13.48 | 2.49 | 0.26 | 7.71 | 1.17 | 0.52 | 6.31 | 1.82 | 0.03 |
沼渣生物炭 | 热解产率/% | 工业分析(质量分数)/% | 元素分析(质量分数)/% | H/C | N/C | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
灰分 | 挥发分 | 固定碳 | N | C | H | S | O | ||||
DR | — | 48.05 | 49.41 | 2.54 | 3.49 | 22.72 | 3.22 | 0.39 | 22.13 | 1.70 | 0.13 |
DR-400 | 65.97 | 69.34 | 26.42 | 4.25 | 1.20 | 13.01 | 1.30 | 0.41 | 14.75 | 1.20 | 0.08 |
DR-500 | 64.97 | 70.27 | 22.62 | 7.11 | 1.27 | 13.85 | 1.25 | 0.51 | 12.85 | 1.08 | 0.08 |
DR-600 | 62.27 | 71.86 | 19.45 | 8.69 | 0.91 | 13.28 | 0.89 | 0.52 | 12.55 | 0.80 | 0.06 |
DR-700 | 52.23 | 81.71 | 16.00 | 2.29 | 0.34 | 8.22 | 1.09 | 0.65 | 8.00 | 1.59 | 0.04 |
DR-800 | 51.57 | 84.03 | 13.48 | 2.49 | 0.26 | 7.71 | 1.17 | 0.52 | 6.31 | 1.82 | 0.03 |
温度/℃ | Freundlich方程 | Langmuir方程 | ||||
---|---|---|---|---|---|---|
KF | 1/n | R2 | KL | Qmax/mg·g-1 | R2 | |
25 | 8.95 | 0.3497 | 0.9904 | 0.4901 | 24.57 | 0.9286 |
35 | 10.39 | 0.3199 | 0.9630 | 0.8286 | 24.17 | 0.9607 |
45 | 10.20 | 0.3221 | 0.9604 | 0.4530 | 33.46 | 0.9752 |
温度/℃ | Freundlich方程 | Langmuir方程 | ||||
---|---|---|---|---|---|---|
KF | 1/n | R2 | KL | Qmax/mg·g-1 | R2 | |
25 | 8.95 | 0.3497 | 0.9904 | 0.4901 | 24.57 | 0.9286 |
35 | 10.39 | 0.3199 | 0.9630 | 0.8286 | 24.17 | 0.9607 |
45 | 10.20 | 0.3221 | 0.9604 | 0.4530 | 33.46 | 0.9752 |
生物炭 | 实际吸附量/mg·g-1 | 伪一级动力学方程 | 伪二级动力学方程 | ||||
---|---|---|---|---|---|---|---|
k1/min-1 | qe/mg·g-1 | R2 | k2/g·(mg·min)-1 | Qe/mg·g-1 | R2 | ||
DR700 | 11.15 | 0.066 | 11.28 | 0.9912 | 0.0083 | 11.92 | 0.9891 |
生物炭 | 实际吸附量/mg·g-1 | 伪一级动力学方程 | 伪二级动力学方程 | ||||
---|---|---|---|---|---|---|---|
k1/min-1 | qe/mg·g-1 | R2 | k2/g·(mg·min)-1 | Qe/mg·g-1 | R2 | ||
DR700 | 11.15 | 0.066 | 11.28 | 0.9912 | 0.0083 | 11.92 | 0.9891 |
1 | AKHTAR L, AHMAD M, IQBAL S, et al. Biochars’ adsorption performance towards moxifloxacin and ofloxacin in aqueous solution: Role of pyrolysis temperature and biomass type[J]. Environmental Technology & Innovation, 2021, 24: 101912. |
2 | KIM H, HWANG Y S, SHARMA V K. Adsorption of antibiotics and iopromide onto single-walled and multi-walled carbon nanotubes[J]. Chemical Engineering Journal, 2014, 255: 23-27. |
3 | LE-MINH N, KHAN S J, DREWES J E, et al. Fate of antibiotics during municipal water recycling treatment processes[J]. Water Research, 2010, 4415: 4295-4323. |
4 | ARIKAN O A. Degradation and metabolization of chlortetracycline during the anaerobic digestion of manure from medicated calves[J]. Journal of Hazardous Materials, 2008, 1582: 485-490. |
5 | KOYUNCU I, ARIKAN O A, WIESNER M R, et al. Removal of hormones and antibiotics by nanofiltration membranes[J]. Journal of Membrane Science, 2008, 3091: 94-101. |
6 | CARLESI J C, FINO D, SPECCHIA V, et al. Electrochemical removal of antibiotics from wastewaters[J]. Applied Catalysis B: Environmental, 2007, 701: 479-487. |
7 | NAVALON S, ALVARO M, GARCIA H. Reaction of chlorine dioxide with emergent water pollutants: Product study of the reaction of three β-lactam antibiotics with ClO2 [J]. Water Research, 2008, 428: 1935-1942. |
8 | SU S N, GUO W L, YI C L, et al. Degradation of amoxicillin in aqueous solution using sulphate radicals under ultrasound irradiation[J]. Ultrasonics Sonochemistry, 2012, 193: 469-474. |
9 | YU F, MA J, WANG J, et al. Magnetic iron oxide nanoparticles functionalized multi-walled carbon nanotubes for toluene, ethylbenzene and xylene removal from aqueous solution[J]. Chemosphere, 2016, 146: 162-172. |
10 | ZHU X D, LIU Y C, QIAN F, et al. Preparation of magnetic porous carbon from waste hydrochar by simultaneous activation and magnetization for tetracycline removal[J]. Bioresource Technology, 2014, 154: 209-214. |
11 | LIU M K, LIU Y Y, BAO D D, et al. Effective removal of tetracycline antibiotics from water using hybrid carbon membranes[J]. Scientific Reports, 2017, 7: 43717. |
12 | ZHANG M C, LI A M, ZHOU Q, et al. Effect of pore size distribution on tetracycline adsorption using magnetic hypercrosslinked resins[J]. Microporous and Mesoporous Materials, 2014, 184: 105-111. |
13 | RODRíGUEZ D R, CARRO A M, CHIANELLA I, et al. Oxytetracycline recovery from aqueous media using computationally designed molecularly imprinted polymers[J]. Analytical and Bioanalytical Chemistry, 2016, 40824: 6845-6856. |
14 | 刘敏敏, 安栋, 侯立安, 等. 沸石基介孔分子筛的制备及其去除四环素的效能[J]. 上海应用技术学院学报(自然科学版), 2016, 16(3): 222-227. |
LIU M M, AN D, HOU A D, et al. The synthesis and tetracycline antibiotics removal from water by novel zeolite-based mesoporous molecular sieves[J]. Journal of Shanghai Institute of Technology (Natural Science), 2016, 16(3): 222-227. | |
15 | AHMAD M, RAJAPAKSHA A U, LIM J E, et al. Biochar as a sorbent for contaminant management in soil and water: A review[J]. Chemosphere, 2014, 99: 19-33. |
16 | LANGMUIR I. The constitution and fundamental properties of solids and liquids. Part I. Solids[J]. Journal of the American Chemical Society, 1916, 3811: 2221-2295. |
17 | AHMAD M, LEE S S, DOU X M, et al. Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water[J]. Bioresource Technology, 2012, 118: 536-544. |
18 | CAYUELA M L, JEFFERY S, VAN Z L. The molar H: Corg ratio of biochar is a key factor in mitigating N2O emissions from soil[J]. Agriculture, Ecosystems & Environment, 2015, 202: 135-138. |
19 | JIN J W, LI Y N, ZHANG J Y, et al. Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge[J]. Journal of Hazardous Materials, 2016, 320: 417-426. |
20 | LU H L, ZHANG W H, WANG S Z, et al. Characterization of sewage sludge-derived biochars from different feedstocks and pyrolysis temperatures[J]. Journal of Analytical and Applied Pyrolysis, 2013, 102: 137-143. |
21 | AFZAL M Z, SUN X F, LIU J, et al. Enhancement of ciprofloxacin sorption on chitosan/biochar hydrogel beads[J]. Science of the Total Environment, 2018, 639: 560-569. |
22 | WANG J, CHEN Z M, CHEN B L. Adsorption of polycyclic aromatic hydrocarbons by graphene and graphene oxide nanosheets[J]. Environmental Science & Technology, 2014, 489: 4817-4825. |
23 | JI L L, CHEN W, DUAN L, et al. Mechanisms for strong adsorption of tetracycline to carbon nanotubes: A comparative study using activated carbon and graphite as adsorbents[J]. Environmental Science & Technology, 2009, 437: 2322-2327. |
24 | HAMADEEN H M, ELKHATIB E A. New nanostructured activated biochar for effective removal of antibiotic ciprofloxacin from wastewater: Adsorption dynamics and mechanisms[J]. Environmental Research, 2022, 210: 112929. |
25 | HAN J Z, WANG X D, YUE J R, et al. Catalytic upgrading of coal pyrolysis tar over char-based catalysts[J]. Fuel Processing Technology, 2014, 122: 98-106. |
26 | LIU J X, HUANG S M, CHEN K, et al. Preparation of biochar from food waste digestate: Pyrolysis behavior and product properties[J]. Bioresource Technology, 2020, 302: 122841. |
27 | YUAN Y, BOLAN N, PRÉVOTEAU A, et al. Applications of biochar in redox-mediated reactions[J]. Bioresource Technology, 2017, 246: 271-281. |
28 | SUN L, WAN S G, LUO W S. Biochars prepared from anaerobic digestion residue, palm bark, and eucalyptus for adsorption of cationic methylene blue dye: Characterization, equilibrium, and kinetic studies[J]. Bioresource Technology, 2013, 140: 406-413. |
29 | PANDEY P K, SHARMA S K, SAMBI S S. Kinetics and equilibrium study of chromium adsorption on zeolite NaX[J]. International Journal of Environmental Science & Technology, 2010, 72: 395-404. |
30 | TAN I A W, AHMAD A L, HAMEED B H. Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated carbon[J]. Journal of Hazardous Materials, 2009, 1642: 473-482. |
31 | PEI Z G, SHAN X Q, KONG J J, et al. Coadsorption of ciprofloxacin and Cu(Ⅱ) on montmorillonite and kaolinite as affected by solution pH[J]. Environmental Science & Technology, 2010, 443: 915-920. |
32 | HU Y, ZHU Y, ZHANG Y, et al. An efficient adsorbent: Simultaneous activated and magnetic ZnO doped biochar derived from camphor leaves for ciprofloxacin adsorption[J]. Bioresource Technology, 2019, 288: 121511. |
33 | LIU Q S, ZHENG T, WANG P, et al. Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers[J]. Chemical Engineering Journal, 2010, 1572: 348-356. |
34 | HASAN Z, JHUNG S H. Removal of hazardous organics from water using metal-organic frameworks (MOFs): plausible mechanisms for selective adsorptions[J]. Journal of Hazardous Materials, 2015, 283: 329-339. |
35 | XIANG Y J, XU Z Y, WEI Y Y, et al. Carbon-based materials as adsorbent for antibiotics removal: mechanisms and influencing factors[J]. Journal of Environmental Management, 2019, 237: 128-138. |
36 | VECLANI D, MELCHIOR A. Adsorption of ciprofloxacin on carbon nanotubes: Insights from molecular dynamics simulations[J]. Journal of Molecular Liquids, 2020, 298: 111977. |
37 | TANG D Y, ZHENG Z, LIN K, et al. Adsorption of p-nitrophenol from aqueous solutions onto activated carbon fiber[J]. Journal of Hazardous Materials, 2007, 1431: 49-56. |
38 | CHEN Y D, LIN Y C, HO S H, et al. Highly efficient adsorption of dyes by biochar derived from pigments-extracted macroalgae pyrolyzed at different temperature[J]. Bioresource Technology, 2018, 259: 104-110. |
39 | SHAWABKEH R A, TUTUNJI M F. Experimental study and modeling of basic dye sorption by diatomaceous clay[J]. Applied Clay Science, 2003, 241: 111-120. |
40 | HO Y S, MCKAY G. Pseudo-second order model for sorption processes[J]. Process Biochemistry, 1999, 345: 451-465. |
[1] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[2] | DAI Huantao, CAO Lingyu, YOU Xinxiu, XU Haoliang, WANG Tao, XIANG Wei, ZHANG Xueyang. Adsorption properties of CO2 on pomelo peel biochar impregnated by lignin [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 356-363. |
[3] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[4] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[5] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[6] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[7] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[8] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[9] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[10] | WANG Haoran, YIN Quanyu, FANG Ming, HOU Jianlin, LI Jun, HE Bin, ZHANG Mingyue. Optimization of near critical-water treatment process of tobacco stems [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5019-5027. |
[11] | ZHANG Zhen, LI Dan, CHEN Chen, WU Jinglan, YING Hanjie, QIAO Hao. Separation and purification of salivary acids with adsorption resin [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4153-4158. |
[12] | JIANG Jing, CHEN Xiaoyu, ZHANG Ruiyan, SHENG Guangyao. Research progress of manganese-loaded biochar preparation and its application in environmental remediation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4385-4397. |
[13] | YU Jingwen, SONG Luna, LIU Yanchao, LYU Ruidong, WU Mengmeng, FENG Yu, LI Zhong, MI Jie. An indole-bearing hypercrosslinked polymer In-HCP for iodine adsorption from water [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3674-3683. |
[14] | LI Yanling, ZHUO Zhen, CHI Liang, CHEN Xi, SUN Tanglei, LIU Peng, LEI Tingzhou. Research progress on preparation and application of nitrogen-doped biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3720-3735. |
[15] | BAI Yadi, DENG Shuai, ZHAO Ruikai, ZHAO Li, YANG Yingxia. Exploration on standardized test scheme and experimental performance of temperature swing adsorption carbon capture unit [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3834-3846. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |