Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (12): 6723-6732.DOI: 10.16085/j.issn.1000-6613.2022-0292
• Resources and environmental engineering • Previous Articles Next Articles
HAN Fen(), YANG Na(), SUN Yongli, JIANG Bin, XIAO Xiaoming, ZHANG Lyuhong()
Received:
2022-02-25
Revised:
2022-04-05
Online:
2022-12-29
Published:
2022-12-20
Contact:
ZHANG Lyuhong
韩芬(), 杨娜(), 孙永利, 姜斌, 肖晓明, 张吕鸿()
通讯作者:
张吕鸿
作者简介:
韩芬(1997—),女,硕士研究生,研究方向为油水聚结分离。E-mail:doubleyx99_99@tju.edu.cn基金资助:
CLC Number:
HAN Fen, YANG Na, SUN Yongli, JIANG Bin, XIAO Xiaoming, ZHANG Lyuhong. Removal of emulsified water in oil by glass fiber coalescer[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6723-6732.
韩芬, 杨娜, 孙永利, 姜斌, 肖晓明, 张吕鸿. 玻璃纤维聚结器脱除油中乳化水[J]. 化工进展, 2022, 41(12): 6723-6732.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0292
液体 | 密度/kg·m-3 | 黏度/mPa·s | 表面张力/mN·m-1 |
---|---|---|---|
去离子水 | 998.2 | 1.05 | 72.3 |
3#工业白油 | 811.2 | 4.28 | 30.2 |
液体 | 密度/kg·m-3 | 黏度/mPa·s | 表面张力/mN·m-1 |
---|---|---|---|
去离子水 | 998.2 | 1.05 | 72.3 |
3#工业白油 | 811.2 | 4.28 | 30.2 |
变量 因素 | 变量 编码 | 编码水平 | ||
---|---|---|---|---|
-1 | 0 | 1 | ||
表观流速/m·h-1 | A | 10 | 20 | 30 |
初始含水量/μL·L-1 | B | 500 | 1000 | 1500 |
床层厚度/mm | C | 100 | 200 | 300 |
床层孔隙率 | D | 0.80 | 0.85 | 0.90 |
变量 因素 | 变量 编码 | 编码水平 | ||
---|---|---|---|---|
-1 | 0 | 1 | ||
表观流速/m·h-1 | A | 10 | 20 | 30 |
初始含水量/μL·L-1 | B | 500 | 1000 | 1500 |
床层厚度/mm | C | 100 | 200 | 300 |
床层孔隙率 | D | 0.80 | 0.85 | 0.90 |
实验号 | 表观流速 /m·h-1 | 初始含水量 /μL·L-1 | 床层厚度 /mm | 床层孔隙率 | 分离效率 /% |
---|---|---|---|---|---|
1 | 10 | 1000 | 200 | 0.90 | 91.65 |
2 | 20 | 500 | 100 | 0.85 | 63.34 |
3 | 30 | 1000 | 300 | 0.85 | 82.12 |
4 | 10 | 1000 | 100 | 0.85 | 90.54 |
5 | 10 | 500 | 200 | 0.85 | 69.23 |
6 | 10 | 1000 | 200 | 0.80 | 92.89 |
7 | 20 | 1000 | 200 | 0.85 | 87.98 |
8 | 20 | 1500 | 100 | 0.85 | 87.05 |
9 | 20 | 1500 | 200 | 0.80 | 86.02 |
10 | 30 | 1000 | 200 | 0.90 | 78.04 |
11 | 10 | 1000 | 300 | 0.85 | 91.55 |
12 | 20 | 500 | 300 | 0.85 | 70.03 |
13 | 20 | 1000 | 300 | 0.85 | 88.39 |
14 | 30 | 500 | 200 | 0.85 | 58.78 |
15 | 30 | 1000 | 200 | 0.80 | 80.32 |
16 | 10 | 1500 | 200 | 0.85 | 94.98 |
17 | 20 | 1000 | 200 | 0.85 | 86.08 |
18 | 20 | 1500 | 200 | 0.90 | 88.45 |
19 | 20 | 1000 | 300 | 0.85 | 87.56 |
20 | 30 | 1500 | 200 | 0.85 | 76.08 |
21 | 20 | 1000 | 200 | 0.85 | 85.58 |
22 | 20 | 1000 | 300 | 0.90 | 87.38 |
23 | 20 | 1000 | 100 | 0.90 | 83.57 |
24 | 20 | 500 | 200 | 0.90 | 65.03 |
25 | 20 | 1500 | 300 | 0.85 | 92.31 |
26 | 20 | 500 | 200 | 0.80 | 69.23 |
27 | 20 | 1000 | 300 | 0.80 | 91.56 |
28 | 30 | 1000 | 100 | 0.85 | 75.09 |
29 | 20 | 1000 | 100 | 0.80 | 86.23 |
实验号 | 表观流速 /m·h-1 | 初始含水量 /μL·L-1 | 床层厚度 /mm | 床层孔隙率 | 分离效率 /% |
---|---|---|---|---|---|
1 | 10 | 1000 | 200 | 0.90 | 91.65 |
2 | 20 | 500 | 100 | 0.85 | 63.34 |
3 | 30 | 1000 | 300 | 0.85 | 82.12 |
4 | 10 | 1000 | 100 | 0.85 | 90.54 |
5 | 10 | 500 | 200 | 0.85 | 69.23 |
6 | 10 | 1000 | 200 | 0.80 | 92.89 |
7 | 20 | 1000 | 200 | 0.85 | 87.98 |
8 | 20 | 1500 | 100 | 0.85 | 87.05 |
9 | 20 | 1500 | 200 | 0.80 | 86.02 |
10 | 30 | 1000 | 200 | 0.90 | 78.04 |
11 | 10 | 1000 | 300 | 0.85 | 91.55 |
12 | 20 | 500 | 300 | 0.85 | 70.03 |
13 | 20 | 1000 | 300 | 0.85 | 88.39 |
14 | 30 | 500 | 200 | 0.85 | 58.78 |
15 | 30 | 1000 | 200 | 0.80 | 80.32 |
16 | 10 | 1500 | 200 | 0.85 | 94.98 |
17 | 20 | 1000 | 200 | 0.85 | 86.08 |
18 | 20 | 1500 | 200 | 0.90 | 88.45 |
19 | 20 | 1000 | 300 | 0.85 | 87.56 |
20 | 30 | 1500 | 200 | 0.85 | 76.08 |
21 | 20 | 1000 | 200 | 0.85 | 85.58 |
22 | 20 | 1000 | 300 | 0.90 | 87.38 |
23 | 20 | 1000 | 100 | 0.90 | 83.57 |
24 | 20 | 500 | 200 | 0.90 | 65.03 |
25 | 20 | 1500 | 300 | 0.85 | 92.31 |
26 | 20 | 500 | 200 | 0.80 | 69.23 |
27 | 20 | 1000 | 300 | 0.80 | 91.56 |
28 | 30 | 1000 | 100 | 0.85 | 75.09 |
29 | 20 | 1000 | 100 | 0.80 | 86.23 |
方差来源 | 平方和 | 自由度 | 均方 | F值 | P值 | 显著性 |
---|---|---|---|---|---|---|
模型 | 2728.60 | 14 | 194.91 | 121.59 | <0.0001 | 显著 |
A | 538.81 | 1 | 538.81 | 336.11 | <0.0001 | |
B | 1388.26 | 1 | 1388.26 | 865.98 | <0.0001 | |
C | 69.84 | 1 | 69.84 | 43.57 | <0.0001 | |
D | 12.26 | 1 | 12.26 | 7.65 | 0.0152 | |
AB | 17.85 | 1 | 17.85 | 11.44 | 0.0049 | |
AC | 9.06 | 1 | 9.06 | 5.65 | 0.0322 | |
AD | 0.27 | 1 | 0.27 | 0.17 | 0.6875 | |
BC | 0.65 | 1 | 0.65 | 0.40 | 0.5352 | |
BD | 10.99 | 1 | 10.99 | 6.85 | 0.0202 | |
CD | 0.58 | 1 | 0.58 | 0.36 | 0.5579 | |
A2 | 31.51 | 1 | 31.51 | 19.65 | 0.0006 | |
B2 | 625.38 | 1 | 625.38 | 390.11 | <0.0001 | |
C2 | 0.29 | 1 | 0.29 | 0.18 | 0.6777 | |
D2 | 0.22 | 1 | 0.22 | 0.14 | 0.7176 | |
残差 | 22.44 | 14 | 1.60 | |||
失拟项 | 16.44 | 10 | 1.64 | 1.10 | 0.5066 | 不显著 |
纯误差 | 6.00 | 4 | 1.50 | |||
总和 | 2751.24 | 28 |
方差来源 | 平方和 | 自由度 | 均方 | F值 | P值 | 显著性 |
---|---|---|---|---|---|---|
模型 | 2728.60 | 14 | 194.91 | 121.59 | <0.0001 | 显著 |
A | 538.81 | 1 | 538.81 | 336.11 | <0.0001 | |
B | 1388.26 | 1 | 1388.26 | 865.98 | <0.0001 | |
C | 69.84 | 1 | 69.84 | 43.57 | <0.0001 | |
D | 12.26 | 1 | 12.26 | 7.65 | 0.0152 | |
AB | 17.85 | 1 | 17.85 | 11.44 | 0.0049 | |
AC | 9.06 | 1 | 9.06 | 5.65 | 0.0322 | |
AD | 0.27 | 1 | 0.27 | 0.17 | 0.6875 | |
BC | 0.65 | 1 | 0.65 | 0.40 | 0.5352 | |
BD | 10.99 | 1 | 10.99 | 6.85 | 0.0202 | |
CD | 0.58 | 1 | 0.58 | 0.36 | 0.5579 | |
A2 | 31.51 | 1 | 31.51 | 19.65 | 0.0006 | |
B2 | 625.38 | 1 | 625.38 | 390.11 | <0.0001 | |
C2 | 0.29 | 1 | 0.29 | 0.18 | 0.6777 | |
D2 | 0.22 | 1 | 0.22 | 0.14 | 0.7176 | |
残差 | 22.44 | 14 | 1.60 | |||
失拟项 | 16.44 | 10 | 1.64 | 1.10 | 0.5066 | 不显著 |
纯误差 | 6.00 | 4 | 1.50 | |||
总和 | 2751.24 | 28 |
变异系数/% | R2 | 预测的R2 | 调整后的R2 | 精密度 |
---|---|---|---|---|
1.54 | 0.9918 | 0.9622 | 0.9837 | 38.341 |
变异系数/% | R2 | 预测的R2 | 调整后的R2 | 精密度 |
---|---|---|---|---|
1.54 | 0.9918 | 0.9622 | 0.9837 | 38.341 |
1 | 高昊鹏, 杨宏伟, 杨士亮, 等. 润滑油中水分的危害及其检测研究[J]. 当代化工, 2014, 43(2): 240-242. |
GAO Haopeng, YANG Hongwei, YANG Shiliang, et al. Research on hazards and detection of water in lubricant oil[J]. Contemporary Chemical Industry, 2014, 43(2): 240-242. | |
2 | 秦娟, 辛寅昌, 马德华. 微乳液的油水分离和机理探讨及应用[J]. 化工学报, 2013, 64(5): 1797-1802. |
QIN Juan, XIN Yinchang, MA Dehua. Separation mechanism and application of oil-water microemulsion[J]. CIESC Journal, 2013, 64(5): 1797-1802. | |
3 | ZHANG Jin, ZHAO Jianguo, QU Wenshan, et al. One-step, low-cost, mussel-inspired green method to prepare superhydrophobic nanostructured surfaces having durability, efficiency, and wide applicability[J]. Journal of Colloid and Interface Science, 2020, 580: 211-222. |
4 | YUAN Huaikui, HUANG Zhiming, SHEN Liwei, et al. Demulsification of crude oil emulsion using carbonized cotton/silica composites[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 617: 126421. |
5 | 杨玉洁, 陈雯雯, 张倩, 等. 聚结技术及其乳化油水分离性能[J]. 化工进展, 2019, 38(S1): 10-18. |
YANG Yujie, CHEN Wenwen, ZHANG Qian, et al. Coalescence technology and its application in the separation of oil and water emulsion[J]. Chemical Industry and Engineering Progress, 2019, 38(S1): 10-18. | |
6 | GADHAVE Ashish D, Neda MEHDIZADEH S, CHASE George G. Effect of pore size and wettability of multilayered coalescing filters on water-in-ULSD coalescence[J]. Separation and Purification Technology, 2019, 221: 236-248. |
7 | LOBO Lloyd, IVANOV Ivan, WASAN Darsh. Dispersion coalescence: kinetic stability of creamed dispersions[J]. AIChE Journal, 1993, 39(2): 322-334. |
8 | HAZLETT R N. Fibrous bed coalescence of water. Role of a sulfonate surfactant in the coalescence process[J]. Industrial & Engineering Chemistry Fundamentals, 1969, 8(4): 633-640. |
9 | KULKARNI Prashant S, PATEL Shagufta U, CHASE George G. Layered hydrophilic/hydrophobic fiber media for water-in-oil coalescence[J]. Separation and Ourification Technology, 2012, 85: 157-164. |
10 | LU Zhaojin, BAI Zhishan, LUO Huiqing, et al. Effect and optimization of bed properties on water-in-oil emulsion separation[J]. Journal of Dispersion Science and Technology, 2019, 40(3): 415-424. |
11 | HAN Qiang, KANG Yong. Separation of water-in-oil emulsion with microfiber glass coalescing bed[J]. Journal of Dispersion Science and Technology, 2017, 38(11): 1523-1529. |
12 | 刘亚莉, 吴山东, 戚俊清. 聚结材料对油品脱水的影响[J]. 化工进展, 2006, 25(S1): 159-162. |
LIU Yali, WU Shandong, QI Junqing. Effect of coalescence packing material on removaling water from oil[J]. Chemical Industry and Engineering Progress, 2006, 25(S1): 159-162. | |
13 | AGARWAL Swarna, VON ARNIM Volkmar, STEGMAIER Thomas, et al. Effect of fibrous coalescer geometry and operating conditions on emulsion separation[J]. Industrial & Engineering Chemistry Research, 2013, 52(36): 13164-13170. |
14 | LU Hao, YANG Qiang, XU Xiao, et al. Effect of the mixed oleophilic fibrous coalescer geometry and the operating conditions on oily wastewater separation[J]. Chemical Eengineering & Technology, 2016, 39(2): 255-262. |
15 | Radmila M Šećerov SOKOLOVIĆ, SOKOLOVIĆ Slobodan M. Effect of the nature of different polymeric fibers on steady-state bed coalescence of an oil-in-water emulsion[J]. Industrial & Engineering Chemistry Research, 2004, 43(20): 6490-6495. |
16 | ZHOU Yanbo, CHEN Li, HU Xiaomeng, et al. Modified resin coalescer for oil-in-water emulsion treatment: effect of operating conditions on oil removal performance[J]. Industrial & Engineering Chemistry Research, 2009, 48(3): 1660-1664. |
17 | ZHANG Luhong, ZHU Taoyue, SUN Yongli, et al. Experimental study of precision-woven fabrics for oil-in-water emulsion coalescence: operating conditions and oil saturation[J]. Journal of Dispersion Science and Technology, 2015, 36(2): 182-189. |
18 | Radmila M Šećerov SOKOLOVIĆ, VULIC Tatjana J, SOKOLOVIĆ Slobodan M. Effect of bed length on steady-state coalescence of oil-in-water emulsion[J]. Separation and Purification Technology, 2007, 56(1): 79-84. |
19 | SHIN C, CHASE G G, RENEKER D H. Recycled expanded polystyrene nanofibers applied in filter media[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 262(1/2/3): 211-215. |
20 | 郑国兴, 蒋明虎, 王凤山. 含聚浓度对旋流器流场分布和分离性能的影响[J]. 化工机械, 2020, 47(2): 207-210. |
ZHENG Guoxing, JIANG Minghu, WANG Fengshan. Effect of polymer concentration on the flow filed distribution and separation performance of hydrocyclone[J]. Chemical Engineering & Machinery. 2020, 47(2): 207-210. | |
21 | 孙烁, 刘其友, 陈水泉, 等. 利用响应面法对L-2菌株降解石油烃进行优化[J]. 化工进展, 2019, 38(12): 5512-5518. |
SUN Shuo, LIU Qiyou, CHEN Shuiquan, et al. Optimization for degradation of total petroleum hydrocarbon by the strain L-2 with response surface methodology[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5512-5518. | |
22 | 张圆圆, 孟永斌, 张琳, 等. 响应面法优化微波辅助水蒸气蒸馏法提取油樟精油工艺[J]. 化工进展, 2020, 39(S2): 291-299. |
ZHANG Yuanyuan, MENG Yongbin, ZHANG Lin, et al. Optimization of microwave-assisted steam distillation extraction of Cinnamomum longepaniculatum essential oil by response surface methodology[J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 291-299. |
[1] | HE Meijin. Application and development trend of molecular management in separation technology in petrochemical field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 260-266. |
[2] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[3] | LI Shilin, HU Jingze, WANG Yilin, WANG Qingji, SHAO Lei. Research progress in separation and extraction of high value components by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 420-429. |
[4] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[5] | LIAO Zhixin, LUO Tao, WANG Hong, KONG Jiajun, SHEN Haiping, GUAN Cuishi, WANG Cuihong, SHE Yucheng. Application and progress of solvent deasphalting technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4573-4586. |
[6] | WANG Lanjiang, LIANG Yu, TANG Qiong, TANG Mingxing, LI Xuekuan, LIU Lei, DONG Jinxiang. Synthesis of highly dispersed Pt/HY catalyst by rapid pyrolysis of platinum precursors and its performance for deep naphthalene hydrogenation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4159-4166. |
[7] | PAN Yichang, ZHOU Rongfei, XING Weihong. Advanced microporous membranes for efficient separation of same-carbon-number hydrocarbon mixtures: State-of-the-art and challenges [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3926-3942. |
[8] | ZHOU Longda, ZHAO Lixin, XU Baorui, ZHANG Shuang, LIU Lin. Advances in electrostatic-cyclonic coupling enhanced multiphase media separation research [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3443-3456. |
[9] | CHEN Xiangli, LI Qianqian, ZHANG Tian, LI Biao, LI Kangkang. Research progress on self-healing oil/water separation membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3600-3610. |
[10] | LOU Baohui, WU Xianhao, ZHANG Chi, CHEN Zhen, FENG Xiangdong. Advances in nanofluid for CO2 absorption and separation [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3802-3815. |
[11] | ZHOU Lei, SUN Xiaoyan, TAO Shaohui, CHEN Yushi, XIANG Shuguang. Development and application of refinery short-cut column model [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2819-2827. |
[12] | WU Heping, CAO Ning, XU Yuanyuan, CAO Yunbo, LI Yudong, YANG Qiang, LU Hao. Rapid separation of hydrofluoric acid and alkylated oil [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2845-2853. |
[13] | YANG Yang, SUN Zhigao, LI Cuimin, LI Juan, HUANG Haifeng. Promotion on the formation of HCFC-141b hydrate under static conditions by surfactant OP-13 [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2854-2859. |
[14] | SUN Luqin, LU Huixia, WANG Jianyou. Separation of lysozyme from egg white by electrodialysis with ultrafiltration membrane(EDUF) process [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2262-2271. |
[15] | SONG Minhang, ZHAO Lixin, XU Baorui, LIU Lin, ZHANG Shuang. Research progress of cyclone-enhanced separation based on disperse phase rearrangement at the inlet [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2219-2232. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |