Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (3): 1430-1439.DOI: 10.16085/j.issn.1000-6613.2021-2148
• Chemical processes energy saving and emission reduction • Previous Articles Next Articles
LU Zhaojin1(), REN Guanwei2, LYU Fuwei1, DONG Xiao1, BAI Zhishan1()
Received:
2021-10-19
Revised:
2021-12-21
Online:
2022-03-28
Published:
2022-03-23
Contact:
BAI Zhishan
鲁朝金1(), 任官伟2, 吕福炜1, 董霄1, 白志山1()
通讯作者:
白志山
作者简介:
鲁朝金(1994—),男,博士研究生,研究方向为纤维聚结分离技术和环保设备开发。E-mail:基金资助:
CLC Number:
LU Zhaojin, REN Guanwei, LYU Fuwei, DONG Xiao, BAI Zhishan. Development and application of deacidification technology in domestic sulfuric acid alkylation refining system[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1430-1439.
鲁朝金, 任官伟, 吕福炜, 董霄, 白志山. 国产硫酸法烷基化精制系统中脱酸技术开发与应用[J]. 化工进展, 2022, 41(3): 1430-1439.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-2148
项目 | CDAlky工艺 | SINOALKY工艺 | STARCTCO工艺 | EMER工艺 |
---|---|---|---|---|
催化剂 | 硫酸 | 硫酸 | 硫酸 | 硫酸 |
反应温度 | -4~-1℃ | -2~4℃ | 4~8℃ | 2~13℃ |
反应器型式 | 立式填料反应器 | N形多段静态混合反应器 | 偏心卧式搅拌反应器 | 分段搅拌反应器 |
进料方式 | 一次进料 | 多点进料 | 一次进料 | 多点进料 |
反应流出物 | 乳化程度较低,副产物少,酸滴粒径分布窄 | 乳化程度较低,副产物少,酸滴粒径分布窄 | 乳化程度高,副产物多,酸滴粒径分布宽 | 乳化程度高,副产物多,酸滴粒径分布宽 |
酸烃分离设备 | 三级聚结器、第一级酸洗 | 闪蒸取热罐、酸烃聚结分离罐、两级精细聚结分离器;备用碱洗罐、水洗罐 | 酸洗罐、碱洗罐、水洗罐 | 沉降罐、碱洗罐、水洗罐 |
反应流出物处理方式 | 干式:三级聚结分离, 第一级酸洗 | 干式和湿式并存。干式:酸烃聚结分离+两级精细聚结分离;湿式:碱洗、水洗 | 湿式:酸洗、碱洗、水洗 | 湿式:重力沉降+碱洗、水洗 |
项目 | CDAlky工艺 | SINOALKY工艺 | STARCTCO工艺 | EMER工艺 |
---|---|---|---|---|
催化剂 | 硫酸 | 硫酸 | 硫酸 | 硫酸 |
反应温度 | -4~-1℃ | -2~4℃ | 4~8℃ | 2~13℃ |
反应器型式 | 立式填料反应器 | N形多段静态混合反应器 | 偏心卧式搅拌反应器 | 分段搅拌反应器 |
进料方式 | 一次进料 | 多点进料 | 一次进料 | 多点进料 |
反应流出物 | 乳化程度较低,副产物少,酸滴粒径分布窄 | 乳化程度较低,副产物少,酸滴粒径分布窄 | 乳化程度高,副产物多,酸滴粒径分布宽 | 乳化程度高,副产物多,酸滴粒径分布宽 |
酸烃分离设备 | 三级聚结器、第一级酸洗 | 闪蒸取热罐、酸烃聚结分离罐、两级精细聚结分离器;备用碱洗罐、水洗罐 | 酸洗罐、碱洗罐、水洗罐 | 沉降罐、碱洗罐、水洗罐 |
反应流出物处理方式 | 干式:三级聚结分离, 第一级酸洗 | 干式和湿式并存。干式:酸烃聚结分离+两级精细聚结分离;湿式:碱洗、水洗 | 湿式:酸洗、碱洗、水洗 | 湿式:重力沉降+碱洗、水洗 |
项目 | 年节约量/t | 单价/CNY | 总费用/×104CNY |
---|---|---|---|
电 | 708610kW·h | 0.54 | 38.26 |
除盐水 | 52920 | 14.57 | 77.10 |
1.0MPa蒸汽 | 8400 | 186.23 | 156.43 |
含盐污水 | 58800 | 8.50 | 49.98 |
系统碱液 | 60 | 960.00 | 5.76 |
废酸量 | 1344 | 1400.00 | 188.16 |
新鲜水 | 5880 | 4.90 | 2.88 |
年经济效益 | — | — | 518.57 |
项目 | 年节约量/t | 单价/CNY | 总费用/×104CNY |
---|---|---|---|
电 | 708610kW·h | 0.54 | 38.26 |
除盐水 | 52920 | 14.57 | 77.10 |
1.0MPa蒸汽 | 8400 | 186.23 | 156.43 |
含盐污水 | 58800 | 8.50 | 49.98 |
系统碱液 | 60 | 960.00 | 5.76 |
废酸量 | 1344 | 1400.00 | 188.16 |
新鲜水 | 5880 | 4.90 | 2.88 |
年经济效益 | — | — | 518.57 |
1 | 刘菊荣, 宋绍富. 我国车用汽油质量标准升级特征与国Ⅵ汽油生产对策[J]. 石油化工应用, 2018, 37(12): 1-6. |
LIU Jurong, SONG Shaofu. Upgrading of vehicle gasoline quality and the production technology of China Ⅵ gasoline[J]. Petrochemical Industry Application, 2018, 37(12): 1-6. | |
2 | 康志军. 我国烷基化技术应用进展[J]. 炼油与化工, 2018, 29(3): 1-3. |
KANG Zhijun. Application progress of alkylation technologies in China[J]. Refining and Chemical Industry, 2018, 29(3): 1-3. | |
3 | 廖健. 关于征求第六阶段《车用汽油》和《车用柴油》国家强制性标准(征求意见稿)意见的通知[J]. 石油石化绿色低碳, 2016, 1(4): 54-55. |
LIAO Jian. Notice on soliciting opinions on the sixth phase of the national mandatory standards for Automotive Gasoline and Automotive Diesel (draft for solicitation of comments)[J]. Green Petroleum & Petrochemicals, 2016, 1(4): 54-55. | |
4 | 李莉. 我国汽柴油质量升级历程及展望[J]. 当代石油石化, 2016, 24(7): 23-28. |
LI Li. The course of China’s gasoline and diesel quality upgrading and its prospect[J]. Petroleum & Petrochemical Today, 2016, 24(7): 23-28. | |
5 | 周茂森, 李国华. 硫酸烷基化工艺及其应用[J]. 浙江化工, 2021, 52(1): 35-40. |
ZHOU Maosen, LI Guohua. Sulfuric acid alkylation process and its application[J]. Zhejiang Chemical Industry, 2021, 52(1): 35-40. | |
6 | 宋冉. 国Ⅵ烷基化汽油产能分析与生产商选择策略[J]. 现代商贸工业, 2018, 39(9): 50-51. |
SONG Ran. National Ⅵ alkylation gasoline capacity analysis and manufacturer selection strategy[J]. Modern Business Trade Industry, 2018, 39(9): 50-51. | |
7 | 曹东学, 杨秀娜, 曹国庆. 碳四烷基化技术发展趋势[J]. 当代石油石化, 2020, 28(8): 29-37. |
CAO Dongxue, YANG Xiuna, CAO Guoqing. Development trend of C4 alkylation technology[J]. Petroleum & Petrochemical Today, 2020, 28(8): 29-37. | |
8 | 毕建国. 烷基化油生产技术的进展[J]. 化工进展, 2007, 26(7): 934-939. |
BI Jianguo. Advances in alkylate manufacture technology[J]. Chemical Industry and Engineering Progress, 2007, 26(7): 934-939. | |
9 | 孟祥海, 张睿, 刘海燕, 等. 复合离子液体碳四烷基化技术开发与应用[J]. 中国科学: 化学, 2018, 48(4): 387-396. |
MENG Xianghai, ZHANG Rui, LIU Haiyan, et al. Development and application of composite ionic liquid catalyzed isobutane alkylation technology[J]. Scientia Sinica (Chimica), 2018, 48(4): 387-396. | |
10 | 王钰佳, 马妍, 徐楚君, 等. 硫酸法与离子液体法C4烷基化工艺进展[J]. 应用化工, 2016, 45(10): 1954-1958. |
WANG Yujia, MA Yan, XU Chujun, et al. Advances in sulfuric acid alkylation and ionic liquid alkylation technologies for butene[J]. Applied Chemical Industry, 2016, 45(10): 1954-1958. | |
11 | 李圣琛. 硫酸法烷基化技术应用研究[J]. 化学工程与装备, 2018, (6): 22-24. |
LI Shengchen. Research on the application of sulfuric acid alkylation technology[J]. Chemical Engineering & Equipment, 2018, (6): 22-24. | |
12 | 张学军, 高卓然, 蔡海军. 异丁烷丁烯烷基化工艺技术应用进展[J]. 应用化工, 2020, 49(3): 741-743, 749. |
ZHANG Xuejun, GAO Zhuoran, CAI Haijun. Technical advances and commercial application of isobutene/butene alkylation process[J]. Applied Chemical Industry, 2020, 49(3): 741-743, 749. | |
13 | ZHANG M Y, ZHU L Y, WANG Z B, et al. Flow field in a liquid-liquid cyclone reactor for isobutane alkylation catalyzed by ionic liquid[J]. Chemical Engineering Research and Design, 2017, 125: 282-290. |
14 | MA H, ZHANG R, MENG X H, et al. Solid formation during composite-ionic-liquid-catalyzed isobutane alkylation[J]. Energy & Fuels, 2014, 28(8): 5389-5395. |
15 | 李明伟, 李涛, 任保增. 烷基化工艺及硫酸烷基化反应器研究进展[J]. 化工进展, 2017, 36(5): 1573-1580. |
LI Mingwei, LI Tao, REN Baozeng. Advance of alkylation process and concentrated sulfuric acid alkylation reactor[J]. Chemical Industry and Engineering Progress, 2017, 36(5): 1573-1580. | |
16 | SMITH L A J. Method of removing entrained sulfuric acid from alkylate: CA2501305[P]. 2004-04-22. |
17 | 贠莹, 高峰, 金平, 等. 硫酸法烷基化工艺技术探讨[J]. 当代化工, 2020, 49(1): 186-190. |
YUN Ying, GAO Feng, JIN Ping, et al. Discussion on sulfuric acid alkylation technology[J]. Contemporary Chemical Industry, 2020, 49(1): 186-190. | |
18 | 万辉. 烷基化工艺技术经济比较[J]. 石油炼制与化工, 2018, 49(11): 91-95. |
WAN Hui. Technical and economic comparison of alkylation process[J]. Petroleum Processing and Petrochemicals, 2018, 49(11): 91-95. | |
19 | GRECHISHKINA M I. Experience in designing sulfuric acid alkylation units[J]. Chemistry and Technology of Fuels and Oils, 2004, 40(2): 109-111. |
20 | 马会霞, 周峰, 乔凯. 液体酸烷基化技术进展[J]. 化工进展, 2014, 33(S1): 32-40. |
MA Huixia, ZHOU Feng, QIAO Kai. Advances in liquid acid alkylation technologies[J]. Chemical Industry and Engineering Progress, 2014, 33(S1): 32-40. | |
21 | 王欢. 硫酸法烷基化的工艺原理和反应系统[J]. 化工管理, 2021(8): 160-161. |
WANG Huan. The process principle and reaction system of sulfuric acid alkylation[J]. Chemical Enterprise Management, 2021(8): 160-161. | |
22 | HAN Q, KANG Y. Separation of water-in-oil emulsion with microfiber glass coalescing bed[J]. Journal of Dispersion Science and Technology, 2017 38(11): 1523-1529. |
23 | LI J Q, GU Y. Coalescence of oil-in-water emulsions in fibrous and granular beds[J]. Separation and Purification Technology, 2005, 42(1): 1-13. |
24 | 陈杰. 硫酸烷基化过程研究及流程模拟[D]. 上海: 华东理工大学, 2013. |
CHEN Jie. Experiment study and simulation of isobutane/butenes sulfuric acid alkylation process[D]. Shanghai: East China University of Science and Technology, 2013. | |
25 | 史一. 硫酸法异丁烷/丁烯烷基化反应研究[D]. 上海: 华东理工大学, 2012. |
SHI Yi. Alkylation of isobutane with butene using sulfuric acid as catalyst[D]. Shanghai: East China University of Science and Technology, 2012. | |
26 | 董明会. 低酸耗硫酸法烷基化工艺技术中试研究[J]. 石油炼制与化工, 2019, 50(4): 7-11. |
DONG Minghui. Pilot test of sulfuric acid alkylation technology with low acid consumption[J]. Petroleum Processing and Petrochemicals, 2019, 50(4): 7-11. | |
27 | BRISCOE B J, GALVIN K P, LUCKHAM P F, et al. Droplet coalescence on fibres[J]. Colloids and Surfaces, 1991, 56: 301-312. |
28 | 董明会, 宗保宁. SINOALKY硫酸法烷基化工艺技术及其工业应用[J]. 石油炼制与化工, 2019, 50(5): 29-32. |
DONG Minghui, ZONG Baoning. Sinoalky technology for sulfuric acid alkylation and its application[J]. Petroleum Processing and Petrochemicals, 2019, 50(5): 29-32. | |
29 | 于吉平, 姚建辉, 董明会. SINOALKY硫酸烷基化装置工艺优化及节能措施[J]. 炼油技术与工程, 2020, 50(12): 50-54. |
YU Jiping, YAO Jianhui, DONG Minghui. Process optimization and energy saving measures of SINOALKY sulfuric acid alkylation unit[J]. Petroleum Refinery Engineering, 2020, 50(12): 50-54. | |
30 | 刘健, 杨跃进, 黄永芳, 等. 国产硫酸法烷基化技术的工业应用[J]. 石油炼制与化工, 2020, 51(7): 6-10. |
LIU Jian, YANG Yuejin, HUANG Yongfang, et al. Industrial application of domestic sulfuric acid alkylation technology[J]. Petroleum Processing and Petrochemicals, 2020, 51(7): 6-10. | |
31 | 邓勇. 硫酸法烷基化工艺在荆门石化的工业应用[J]. 工业催化, 2020, 28(7): 52-55. |
DENG Yong. Application of sulfuric acid alkylation process in SINOPEC Jingmen Petrochemical Company[J]. Industrial Catalysis, 2020, 28(7): 52-55. |
[1] | HE Meijin. Application and development trend of molecular management in separation technology in petrochemical field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 260-266. |
[2] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[3] | LI Shilin, HU Jingze, WANG Yilin, WANG Qingji, SHAO Lei. Research progress in separation and extraction of high value components by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 420-429. |
[4] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[5] | LIAO Zhixin, LUO Tao, WANG Hong, KONG Jiajun, SHEN Haiping, GUAN Cuishi, WANG Cuihong, SHE Yucheng. Application and progress of solvent deasphalting technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4573-4586. |
[6] | PAN Yichang, ZHOU Rongfei, XING Weihong. Advanced microporous membranes for efficient separation of same-carbon-number hydrocarbon mixtures: State-of-the-art and challenges [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3926-3942. |
[7] | LOU Baohui, WU Xianhao, ZHANG Chi, CHEN Zhen, FENG Xiangdong. Advances in nanofluid for CO2 absorption and separation [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3802-3815. |
[8] | ZHOU Longda, ZHAO Lixin, XU Baorui, ZHANG Shuang, LIU Lin. Advances in electrostatic-cyclonic coupling enhanced multiphase media separation research [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3443-3456. |
[9] | CHEN Xiangli, LI Qianqian, ZHANG Tian, LI Biao, LI Kangkang. Research progress on self-healing oil/water separation membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3600-3610. |
[10] | ZHOU Lei, SUN Xiaoyan, TAO Shaohui, CHEN Yushi, XIANG Shuguang. Development and application of refinery short-cut column model [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2819-2827. |
[11] | WU Heping, CAO Ning, XU Yuanyuan, CAO Yunbo, LI Yudong, YANG Qiang, LU Hao. Rapid separation of hydrofluoric acid and alkylated oil [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2845-2853. |
[12] | YANG Yang, SUN Zhigao, LI Cuimin, LI Juan, HUANG Haifeng. Promotion on the formation of HCFC-141b hydrate under static conditions by surfactant OP-13 [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2854-2859. |
[13] | SONG Minhang, ZHAO Lixin, XU Baorui, LIU Lin, ZHANG Shuang. Research progress of cyclone-enhanced separation based on disperse phase rearrangement at the inlet [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2219-2232. |
[14] | ZHAO Yao, ZHOU Zhihui, WU Hongdan, HU Chuanzhi, ZHANG Guochun, WU Ruipeng. Response surface analysis and optimization of membrane permeation vaporization by Silicalite-1 molecular sieve [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2586-2594. |
[15] | PANG Nanjiong, WANG Xiaoling, LIAO Xuepin, SHI Bi. Separation of boron isotopes by collagen fibers-immobilized black wattle tannin [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2616-2625. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |