Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (7): 4190-4201.DOI: 10.16085/j.issn.1000-6613.2024-0745
• Resources and environmental engineering • Previous Articles
GAO Jun1(
), SUN Xiaojie2, DONG Bin1,2(
)
Received:2024-05-07
Revised:2024-07-05
Online:2025-08-04
Published:2025-07-25
Contact:
DONG Bin
通讯作者:
董滨
作者简介:高君(1997—),女,博士研究生,研究方向为固废处理与资源化。E-mail:gaojunine@tongji.edu.cn。
基金资助:CLC Number:
GAO Jun, SUN Xiaojie, DONG Bin. Differences in nitrogen conversion and microecology during anaerobic digestion of different nitrogen-source substrates reveal the degradation bottleneck of sludge protein substances[J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4190-4201.
高君, 孙晓杰, 董滨. 不同氮源基质厌氧消化过程中氮转化及微生态的差异揭示污泥蛋白类物质的降解瓶颈[J]. 化工进展, 2025, 44(7): 4190-4201.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0745
| 接种泥和基质 | 含水率/% | (VS/TS)/% | pH |
|---|---|---|---|
| 接种泥 | 93.26±0.01 | 43.99±0.01 | 7.89±0.05 |
| 污泥 | 88.4±0.03 | 55.78±0.02 | 7.74±0.03 |
| 秸秆 | 9.36±0.02 | 73.07±0.01 | 7.58±0.02 |
| 鸡粪 | 85.77±0.01 | 61.68±0.05 | 7.76±0.03 |
| 大豆 | 87.01±0.03 | 94.40±0.01 | 7.79±0.02 |
| 牛肉 | 89.81±0.05 | 95.96±0.07 | 7.81±0.02 |
| 接种泥和基质 | 含水率/% | (VS/TS)/% | pH |
|---|---|---|---|
| 接种泥 | 93.26±0.01 | 43.99±0.01 | 7.89±0.05 |
| 污泥 | 88.4±0.03 | 55.78±0.02 | 7.74±0.03 |
| 秸秆 | 9.36±0.02 | 73.07±0.01 | 7.58±0.02 |
| 鸡粪 | 85.77±0.01 | 61.68±0.05 | 7.76±0.03 |
| 大豆 | 87.01±0.03 | 94.40±0.01 | 7.79±0.02 |
| 牛肉 | 89.81±0.05 | 95.96±0.07 | 7.81±0.02 |
| 项目 | 氨基酸含量/μg·mL-1 | ||||
|---|---|---|---|---|---|
| 污泥 | 秸秆 | 鸡粪 | 大豆 | 牛肉 | |
| 厌氧消化前 | |||||
| 水解氨基酸 | 3694.56 | 1084.96 | 3873.02 | 4398.65 | 6074.24 |
| 游离氨基酸 | 159.86 | 46.97 | 151.62 | 208.22 | 356.67 |
| 非游离氨基酸 | 3534.70 | 1037.98 | 3721.40 | 4190.43 | 5717.57 |
| 厌氧消化后 | |||||
| 水解氨基酸 | 2707.76 | 776.07 | 2640.00 | 2109.17 | 2995.63 |
| 游离氨基酸 | 453.61 | 122.16 | 379.04 | 282.16 | 269.15 |
| 非游离氨基酸 | 2254.15 | 653.91 | 2260.96 | 1827.01 | 2726.48 |
| 项目 | 氨基酸含量/μg·mL-1 | ||||
|---|---|---|---|---|---|
| 污泥 | 秸秆 | 鸡粪 | 大豆 | 牛肉 | |
| 厌氧消化前 | |||||
| 水解氨基酸 | 3694.56 | 1084.96 | 3873.02 | 4398.65 | 6074.24 |
| 游离氨基酸 | 159.86 | 46.97 | 151.62 | 208.22 | 356.67 |
| 非游离氨基酸 | 3534.70 | 1037.98 | 3721.40 | 4190.43 | 5717.57 |
| 厌氧消化后 | |||||
| 水解氨基酸 | 2707.76 | 776.07 | 2640.00 | 2109.17 | 2995.63 |
| 游离氨基酸 | 453.61 | 122.16 | 379.04 | 282.16 | 269.15 |
| 非游离氨基酸 | 2254.15 | 653.91 | 2260.96 | 1827.01 | 2726.48 |
| 酶编号 | 定义 | 反应 |
|---|---|---|
| 6.3.1.2 | 谷氨酸-氨连接酶 | ATP+L-谷氨酸+NH3 |
| 1.7.99.1 | 羟胺还原酶 | NH3+H2O+受体 |
| 1.7.2.2 | 亚硝酸还原酶(细胞色素;生成氨) | NH3+2H2O+6氧化细胞色素c |
| 6.3.1.1 | 天冬氨酸-氨连接酶 | ATP+L-天冬氨酸+NH3 |
| 4.3.1.3 | 组氨酸氨裂解酶 | L-组氨酸 |
| 6.3.4.2 | CTP 合成酶(谷氨酰胺水解) | L-谷氨酰胺+H2O |
| 4.3.1.4 | 亚氨甲基四氢叶酸环脱氨酶 | 5-亚氨甲基四氢叶酸 |
| 2.1.2.10 | 氨甲基转移酶 | [蛋白]-S8-氨甲基二氢硫辛酰赖氨酸+四氢叶酸 |
| 4.3.1.19 | 苏氨酸氨裂解酶 | L-苏氨酸 |
| 2.5.1.61 | 羟甲基胆色素合成酶 | 4-胆色素原+H2O |
| 4.3.1.17 | L-丝氨酸氨裂解酶 | L-丝氨酸 |
| 4.3.1.1 | 天冬氨酸氨裂解酶 | L-天冬氨酸 |
| 4.3.1.7 | 乙醇胺氨裂解酶 | 乙醇胺 |
| 4.3.1.2 | 甲基天冬氨酸氨裂解酶 | L-苏氨酸-3-甲基天冬氨酸 |
| 4.3.1.15 | 二氨基丙酸氨裂解酶 | 2,3-二氨基丙酸+H2O |
| 4.3.1.12 | 鸟氨酸环脱氨酶 | L-鸟氨酸 |
| 4.3.1.18 | D-丝氨酸氨裂解酶 | D-丝氨酸 |
| 酶编号 | 定义 | 反应 |
|---|---|---|
| 6.3.1.2 | 谷氨酸-氨连接酶 | ATP+L-谷氨酸+NH3 |
| 1.7.99.1 | 羟胺还原酶 | NH3+H2O+受体 |
| 1.7.2.2 | 亚硝酸还原酶(细胞色素;生成氨) | NH3+2H2O+6氧化细胞色素c |
| 6.3.1.1 | 天冬氨酸-氨连接酶 | ATP+L-天冬氨酸+NH3 |
| 4.3.1.3 | 组氨酸氨裂解酶 | L-组氨酸 |
| 6.3.4.2 | CTP 合成酶(谷氨酰胺水解) | L-谷氨酰胺+H2O |
| 4.3.1.4 | 亚氨甲基四氢叶酸环脱氨酶 | 5-亚氨甲基四氢叶酸 |
| 2.1.2.10 | 氨甲基转移酶 | [蛋白]-S8-氨甲基二氢硫辛酰赖氨酸+四氢叶酸 |
| 4.3.1.19 | 苏氨酸氨裂解酶 | L-苏氨酸 |
| 2.5.1.61 | 羟甲基胆色素合成酶 | 4-胆色素原+H2O |
| 4.3.1.17 | L-丝氨酸氨裂解酶 | L-丝氨酸 |
| 4.3.1.1 | 天冬氨酸氨裂解酶 | L-天冬氨酸 |
| 4.3.1.7 | 乙醇胺氨裂解酶 | 乙醇胺 |
| 4.3.1.2 | 甲基天冬氨酸氨裂解酶 | L-苏氨酸-3-甲基天冬氨酸 |
| 4.3.1.15 | 二氨基丙酸氨裂解酶 | 2,3-二氨基丙酸+H2O |
| 4.3.1.12 | 鸟氨酸环脱氨酶 | L-鸟氨酸 |
| 4.3.1.18 | D-丝氨酸氨裂解酶 | D-丝氨酸 |
| 编号 | 污泥 | 秸秆 | 鸡粪 | 大豆 | 牛肉 | 定义 |
|---|---|---|---|---|---|---|
| ko00250 | 0.8950 | 0.9371 | 0.9224 | 0.9328 | 0.9019 | 丙氨酸、天冬氨酸和谷氨酸代谢 |
| ko00260 | 1.0005 | 0.9925 | 1.0006 | 1.0185 | 1.0249 | 甘氨酸、丝氨酸和苏氨酸代谢 |
| ko00270 | 0.9535 | 0.9637 | 0.9559 | 0.9703 | 0.9751 | 半胱氨酸和蛋氨酸代谢 |
| ko00280 | 0.4763 | 0.4768 | 0.4924 | 0.5619 | 0.5022 | 缬氨酸、亮氨酸和异亮氨酸降解 |
| ko00281 | 0.0518 | 0.0540 | 0.0588 | 0.0818 | 0.0590 | 香叶醇降解 |
| ko00290 | 0.3337 | 0.3755 | 0.3669 | 0.3594 | 0.3388 | 缬氨酸、亮氨酸和异亮氨酸生物合成 |
| ko00300 | 0.5573 | 0.5391 | 0.5294 | 0.5309 | 0.5466 | 赖氨酸生物合成 |
| ko00310 | 0.3434 | 0.3181 | 0.3400 | 0.3584 | 0.3486 | 赖氨酸降解 |
| ko00330 | 0.4417 | 0.4805 | 0.4911 | 0.5156 | 0.4941 | 精氨酸和脯氨酸代谢 |
| ko00340 | 0.3840 | 0.3525 | 0.3527 | 0.3446 | 0.3569 | 组氨酸代谢 |
| ko00350 | 0.1891 | 0.1876 | 0.1935 | 0.2104 | 0.1978 | 酪氨酸代谢 |
| ko00360 | 0.3048 | 0.3093 | 0.3104 | 0.3366 | 0.3104 | 苯丙氨酸代谢 |
| ko00380 | 0.3171 | 0.3051 | 0.3239 | 0.3564 | 0.3320 | 色氨酸代谢 |
| ko00400 | 0.5209 | 0.5086 | 0.5031 | 0.4952 | 0.4812 | 苯丙氨酸、酪氨酸和色氨酸生物合成 |
| ko00410 | 0.1857 | 0.1648 | 0.1723 | 0.1855 | 0.1792 | β-丙氨酸代谢 |
| ko00430 | 0.1219 | 0.1339 | 0.1402 | 0.1416 | 0.1386 | 牛磺酸和假牛磺酸代谢 |
| ko00440 | 0.0289 | 0.0389 | 0.0313 | 0.0397 | 0.0321 | 磷酸盐和磷酸亚盐代谢 |
| ko00450 | 0.3992 | 0.3826 | 0.3906 | 0.3687 | 0.3890 | 硒化合物代谢 |
| ko00460 | 0.1818 | 0.2019 | 0.1992 | 0.1683 | 0.1943 | 氰氨基酸代谢 |
| ko00471 | 0.1728 | 0.1616 | 0.1653 | 0.1623 | 0.1706 | D-谷氨酰胺和 D-谷氨酸代谢 |
| ko00472 | 0.0261 | 0.0243 | 0.0265 | 0.0245 | 0.0293 | D-精氨酸和 D-鸟氨酸代谢 |
| ko00473 | 0.1387 | 0.1670 | 0.1601 | 0.1834 | 0.1691 | D-丙氨酸代谢 |
| ko00480 | 0.2111 | 0.2414 | 0.2447 | 0.2726 | 0.2498 | 谷胱甘肽代谢 |
| 总和 | 8.2350 | 8.3167 | 8.3712 | 8.6194 | 8.4214 | — |
| 编号 | 污泥 | 秸秆 | 鸡粪 | 大豆 | 牛肉 | 定义 |
|---|---|---|---|---|---|---|
| ko00250 | 0.8950 | 0.9371 | 0.9224 | 0.9328 | 0.9019 | 丙氨酸、天冬氨酸和谷氨酸代谢 |
| ko00260 | 1.0005 | 0.9925 | 1.0006 | 1.0185 | 1.0249 | 甘氨酸、丝氨酸和苏氨酸代谢 |
| ko00270 | 0.9535 | 0.9637 | 0.9559 | 0.9703 | 0.9751 | 半胱氨酸和蛋氨酸代谢 |
| ko00280 | 0.4763 | 0.4768 | 0.4924 | 0.5619 | 0.5022 | 缬氨酸、亮氨酸和异亮氨酸降解 |
| ko00281 | 0.0518 | 0.0540 | 0.0588 | 0.0818 | 0.0590 | 香叶醇降解 |
| ko00290 | 0.3337 | 0.3755 | 0.3669 | 0.3594 | 0.3388 | 缬氨酸、亮氨酸和异亮氨酸生物合成 |
| ko00300 | 0.5573 | 0.5391 | 0.5294 | 0.5309 | 0.5466 | 赖氨酸生物合成 |
| ko00310 | 0.3434 | 0.3181 | 0.3400 | 0.3584 | 0.3486 | 赖氨酸降解 |
| ko00330 | 0.4417 | 0.4805 | 0.4911 | 0.5156 | 0.4941 | 精氨酸和脯氨酸代谢 |
| ko00340 | 0.3840 | 0.3525 | 0.3527 | 0.3446 | 0.3569 | 组氨酸代谢 |
| ko00350 | 0.1891 | 0.1876 | 0.1935 | 0.2104 | 0.1978 | 酪氨酸代谢 |
| ko00360 | 0.3048 | 0.3093 | 0.3104 | 0.3366 | 0.3104 | 苯丙氨酸代谢 |
| ko00380 | 0.3171 | 0.3051 | 0.3239 | 0.3564 | 0.3320 | 色氨酸代谢 |
| ko00400 | 0.5209 | 0.5086 | 0.5031 | 0.4952 | 0.4812 | 苯丙氨酸、酪氨酸和色氨酸生物合成 |
| ko00410 | 0.1857 | 0.1648 | 0.1723 | 0.1855 | 0.1792 | β-丙氨酸代谢 |
| ko00430 | 0.1219 | 0.1339 | 0.1402 | 0.1416 | 0.1386 | 牛磺酸和假牛磺酸代谢 |
| ko00440 | 0.0289 | 0.0389 | 0.0313 | 0.0397 | 0.0321 | 磷酸盐和磷酸亚盐代谢 |
| ko00450 | 0.3992 | 0.3826 | 0.3906 | 0.3687 | 0.3890 | 硒化合物代谢 |
| ko00460 | 0.1818 | 0.2019 | 0.1992 | 0.1683 | 0.1943 | 氰氨基酸代谢 |
| ko00471 | 0.1728 | 0.1616 | 0.1653 | 0.1623 | 0.1706 | D-谷氨酰胺和 D-谷氨酸代谢 |
| ko00472 | 0.0261 | 0.0243 | 0.0265 | 0.0245 | 0.0293 | D-精氨酸和 D-鸟氨酸代谢 |
| ko00473 | 0.1387 | 0.1670 | 0.1601 | 0.1834 | 0.1691 | D-丙氨酸代谢 |
| ko00480 | 0.2111 | 0.2414 | 0.2447 | 0.2726 | 0.2498 | 谷胱甘肽代谢 |
| 总和 | 8.2350 | 8.3167 | 8.3712 | 8.6194 | 8.4214 | — |
| [1] | LI Zhekun, ZHANG Liqiu, DU Ziwen, et al. Comparison of carbon emissions in different treatment and disposal process routes of municipal sludge[J]. Huan Jing Ke Xue, 2023, 44(2): 1181-1190. |
| [2] | 陈思思, 杨殿海, 庞维海, 等. 我国剩余污泥厌氧转化的主要影响因素及影响机制研究进展[J]. 化工进展, 2020, 39(4): 1511-1520. |
| CHEN Sisi, YANG Dianhai, PANG Weihai, et al. Main influencing factors and mechanisms of anaerobic transformation of excess sludge in China[J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1511-1520. | |
| [3] | LI Lei, XU Ying, DAI Xiaohu, et al. Principles and advancements in improving anaerobic digestion of organic waste via direct interspecies electron transfer[J]. Renewable and Sustainable Energy Reviews, 2021, 148: 111367. |
| [4] | CHEN Sisi, LI Ning, DONG Bin, et al. New insights into the enhanced performance of high solid anaerobic digestion with dewatered sludge by thermal hydrolysis: Organic matter degradation and methanogenic pathways[J]. Journal of Hazardous Materials, 2018, 342: 1-9. |
| [5] | CHEN Sisi, DONG Bin, DAI Xiaohu, et al. Effects of thermal hydrolysis on the metabolism of amino acids in sewage sludge in anaerobic digestion[J]. Waste Management, 2019, 88: 309-318. |
| [6] | CHEN Sisi, GAO Jun, DONG Bin. Bottlenecks of anaerobic degradation of proteins in sewage sludge and the potential targeted enhancing strategies[J]. Science of the Total Environment, 2021, 759: 143573. |
| [7] | RAMSAY I R, PULLAMMANAPPALLIL P C. Protein degradation during anaerobic wastewater treatment: Derivation of stoichiometry[J]. Biodegradation, 2001, 12(4): 247-256. |
| [8] | BARBER W P F. Thermal hydrolysis for sewage treatment: A critical review[J]. Water Research, 2016, 104: 53-71. |
| [9] | SNIFFEN C J, O’CONNOR J D, VAN SOEST P J, et al. A net carbohydrate and protein system for evaluating cattle diets: Ⅱ. Carbohydrate and protein availability[J]. Journal of Animal Science, 1992, 70(11): 3562-3577. |
| [10] | CHALUPA William, SNIFFEN Charles J. Protein and amino acid nutrition of lactating dairy cattle[J]. Veterinary Clinics of North America Food Animal Practice, 1991, 7(2): 353-372. |
| [11] | LI Xinxin, ZHANG Yonggen, YU Peiqiang. Association of bio-energy processing-induced protein molecular structure changes with CNCPS-based protein degradation and digestion of co-products in dairy cows[J]. Journal of Agricultural and Food Chemistry, 2016, 64(20): 4086-4094. |
| [12] | GAO Jun, LI Lei, YUAN Shijie, et al. Reconceptualization of the mechanism of thermal hydrolysis pretreatment to enhance the anaerobic conversion of sludge organic nitrogen: Decisive role of organic nitrogen occurrence[J]. Science of the Total Environment, 2023, 899: 165703. |
| [13] | GILCREAS F W. Standard methods for the examination of water and waste water[J]. American Public Health Nations Health, 1966, 56(3): 387-388. |
| [14] | XU Ying, LU Yiqing, DAI Xiaohu, et al. The influence of organic-binding metals on the biogas conversion of sewage sludge[J]. Water Research, 2017, 126: 329-341. |
| [15] | SOUTH C R, HOGSETT D A L, LYND L R. Modeling simultaneous saccharification and fermentation of lignocellulose to ethanol in batch and continuous reactors[J]. Enzyme and Microbial Technology, 1995, 17(9): 797-803. |
| [16] | MATHERI A N, NDIWENI S N, BELAID M, et al. Optimising biogas production from anaerobic co-digestion of chicken manure and organic fraction of municipal solid waste[J]. Renewable and Sustainable Energy Reviews, 2017, 80: 756-764. |
| [17] | BOUGRIER C, DELGENÈS J P, CARRÈRE H. Impacts of thermal pre-treatments on the semi-continuous anaerobic digestion of waste activated sludge[J]. Biochemical Engineering Journal, 2007, 34(1): 20-27. |
| [18] | MCINERNEY M J. Anaerobic hydrolysis and fermentation of fats and proteins[J]. Biology of Anaerobic Microorganisms, 1988: 373-415. |
| [19] | TIEHM A, NICKEL K, ZELLHORN M, et al. Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization[J]. Water Research, 2001, 35(8): 2003-2009. |
| [20] | PARK Junghoon, PARK Seyong, KIM Moonil. Anaerobic degradation of amino acids generated from the hydrolysis of sewage sludge[J]. Environmental Technology, 2014, 35(9/10/11/12): 1133-1139. |
| [21] | LI Lei, CAI Chen, CHEN Yongdong, et al. Secondary acidogenic fermentation of waste activated sludge via voltage supplementation: Insights from sludge structure and enzymes activity[J]. Science of the Total Environment, 2021, 797: 149161. |
| [22] | MIURA Yuki, WATANABE Yoshimasa, OKABE Satoshi. Significance of Chloroflexi in performance of submerged membrane bioreactors (MBR) treating municipal wastewater[J]. Environmental Science & Technology, 2007, 41(22): 7787-7794. |
| [23] | GAO Dawen, ZHANG Tong, TANG Chu-Yang Y, et al. Membrane fouling in an anaerobic membrane bioreactor: Differences in relative abundance of bacterial species in the membrane foulant layer and in suspension[J]. Journal of Membrane Science, 2010, 364(1/2): 331-338. |
| [24] | GUO Jianhua, LI Jie, CHEN Hui, et al. Metagenomic analysis reveals wastewater treatment plants as hotspots of antibiotic resistance genes and mobile genetic elements[J]. Water Research, 2017, 123: 468-478. |
| [25] | ZHOU Lijie, GAO Ying, YU Ke, et al. Microbial community in in situ waste sludge anaerobic digestion with alkalization for enhancement of nutrient recovery and energy generation[J]. Bioresource Technology, 2020, 295: 122277. |
| [26] | BARKER H A. Fermentations of nitrogenous organic compounds[M]//Metabolism. Amsterdam: Elsevier, 1961: 151-207. |
| [27] | 费媛媛, 焦硕, 陆雅海. 中国东部水稻土壤丁酸互营降解微生物的地理分布格局[J]. 北京大学学报(自然科学版), 2021, 57(1): 143-152. |
| FEI Yuanyuan, JIAO Shuo, LU Yahai. Biogeographic patterns of microbial communities associated with syntrophic butyrate degradation in paddy soils in Eastern China[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2021, 57(1): 143-152. | |
| [28] | NA Jeong-Geol, LEE Mo-Kwon, YUN Yeo-Myeong, et al. Microbial community analysis of anaerobic granules in phenol-degrading UASB by next generation sequencing[J]. Biochemical Engineering Journal, 2016, 112: 241-248. |
| [29] | MENG Xianghui, ZHANG Hao, YANG Jiancheng, et al. Cold isostatic pressing-study on methane production and microbial communities in anaerobic digestion of wheat straw with high-solids[J]. Journal of Cleaner Production, 2023, 428: 139469. |
| [30] | PANG Chao, WANG Shun, HE Chunhua, et al. Anaerobic membrane bioreactor coupled with polyaluminum chloride for high-strength phenolic wastewater treatment: Robust performance and potential mechanisms[J]. Environmental Research, 2024, 252: 118777. |
| [1] | WANG Shuai, QIAN Xiangchen, ZHANG Leiqi, WU Qiliang, LIU Min. Degradation mechanism of key components in proton exchange membrane fuel cells and proton exchange membrane electrolysis cells [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3804-3815. |
| [2] | YE Xiaosheng, YUAN Ting, JIA Xin, REN Qingxia. Research progress on the removal of microcystin-LR by multicomponent composite nanomaterials [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4144-4157. |
| [3] | CHEN Qian, TONG Kun, XIE Jiacai, SHAO Zhiguo, NIE Fan, LI Chentao. Research progress on the treatment technology of polymer-containing oil sludge [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4158-4168. |
| [4] | LUO Siling, AI Jianping, LI Wenkui, WANG Yi, CHENG Lihong, WAN Yun, HUANG Long, LI Xibao. Research progress on degradation of typical antibiotics by advanced oxidation processes [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4169-4189. |
| [5] | REN Pengkun, ZHONG Zhaoping, ZHANG Xiaoni, YANG Yuxuan, RAN Zhenzhen. Preparation of sludge-sawdust-based activated carbon and its adsorption performance for benzene series VOCs [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3031-3040. |
| [6] | JIANG Qiyi, DENG Xinyue, YUAN Yanting, ZHANG Yaqian, YANG Min, LI Weina, FAN Daidi. Advances in engineering design, optimization and application of targeted therapeutic proteins and peptides [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2407-2420. |
| [7] | WU Mengqin, WANG Jiayao, XU Youqiang, WANG Yu. Progress in cascade conversion of CO2 to single cell protein through chemical and biological catalysis [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2429-2440. |
| [8] | WANG Yuanyuan, ZHANG Chong, HAN Shuangyan, XING Xinhui. Research progress on bioproduction of recombinant proteins by Pichia pastoris utilizing methanol [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2441-2450. |
| [9] | LI Qingsi, ZHANG Liming, ZHANG Lei. Research progress on anti-icing coatings and anti-icing application prospects of antifreeze proteins [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2505-2514. |
| [10] | ZHU Junying, RONG Junfeng, ZONG Baoning. Feasibility analysis of Spirulina carbon sequestration while producing of bulk feed protein [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2705-2715. |
| [11] | FU Donglong, FENG Guanqing, XU Xinquan, LU Zhenpu, PEI Chunlei, GONG Jinlong. Recent advances in catalytic conversion of waste plastics [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2758-2766. |
| [12] | ZHANG Pei, GAO Lining, DING Siqing, LI Li, ZHU Xiruo, HE Rui. Preparation of g-C3N4/TiO2 heterojunction catalyst and its photocatalytic NO degradation performance [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2045-2056. |
| [13] | ZHANG Yiru, HAN Dongmei, MA Weifang. Research progress on iron-based composite bismuth oxyhalide magnetic materials for enhanced visible light catalytic treatment of refractory organic wastewater [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2258-2273. |
| [14] | NIU Jingwei, CHEN Xiaoyang, ZHANG Jian, ZHOU Yuzhi, CHEN Min. Activated persulfate-induced degradation of typical environmental endocrine disruptors in soil [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2285-2296. |
| [15] | SHAN Xueying, LI Lingyu, ZHANG Meng, ZHANG Jiafu, LI Jinchun. Preparation and properties of flame retardant epoxy resin/low molecular weight polyphenylene ether materials [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1533-1541. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |