Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (4): 2045-2056.DOI: 10.16085/j.issn.1000-6613.2024-0583
• Industrial catalysis • Previous Articles Next Articles
ZHANG Pei(
), GAO Lining(
), DING Siqing, LI Li, ZHU Xiruo, HE Rui
Received:2024-04-08
Revised:2024-06-05
Online:2025-05-07
Published:2025-04-25
Contact:
GAO Lining
通讯作者:
高莉宁
作者简介:张佩(1995—),女,硕士研究生,研究方向为光催化。E-mail:zhungpeir@163.com。
CLC Number:
ZHANG Pei, GAO Lining, DING Siqing, LI Li, ZHU Xiruo, HE Rui. Preparation of g-C3N4/TiO2 heterojunction catalyst and its photocatalytic NO degradation performance[J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2045-2056.
张佩, 高莉宁, 丁思晴, 李立, 祝锡爇, 何锐. g-C3N4/TiO2异质结光催化剂的制备及其对NO的降解性能[J]. 化工进展, 2025, 44(4): 2045-2056.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0583
| 污染气体量 | 流量 | 相对湿度 | 检测时间 | 紫外光波长 | 日光灯 |
|---|---|---|---|---|---|
| 35mg/m3 | 1L/min | 50% | 每小时1次,共5h | 365nm | 白光 |
| 污染气体量 | 流量 | 相对湿度 | 检测时间 | 紫外光波长 | 日光灯 |
|---|---|---|---|---|---|
| 35mg/m3 | 1L/min | 50% | 每小时1次,共5h | 365nm | 白光 |
| 光催化剂 | 平均孔径/nm | 总孔容/cm3·g-1 | 比表面积/m2·g-1 |
|---|---|---|---|
| TiO2 | 29.16 | 0.015 | 5.59 |
| CN | 22.38 | 0.011 | 5.77 |
| SCN | 30.12 | 0.024 | 10.40 |
| CN-Ti-30 | 19.92 | 0.015 | 8.43 |
| CN-Ti-50 | 17.72 | 0.016 | 9.65 |
| CN-Ti-60 | 25.61 | 0.024 | 12.08 |
| SCN-Ti-30 | 28.75 | 0.024 | 10.79 |
| SCN-Ti-50 | 18.72 | 0.024 | 11.46 |
| SCN-Ti-60 | 26.94 | 0.026 | 12.25 |
| 光催化剂 | 平均孔径/nm | 总孔容/cm3·g-1 | 比表面积/m2·g-1 |
|---|---|---|---|
| TiO2 | 29.16 | 0.015 | 5.59 |
| CN | 22.38 | 0.011 | 5.77 |
| SCN | 30.12 | 0.024 | 10.40 |
| CN-Ti-30 | 19.92 | 0.015 | 8.43 |
| CN-Ti-50 | 17.72 | 0.016 | 9.65 |
| CN-Ti-60 | 25.61 | 0.024 | 12.08 |
| SCN-Ti-30 | 28.75 | 0.024 | 10.79 |
| SCN-Ti-50 | 18.72 | 0.024 | 11.46 |
| SCN-Ti-60 | 26.94 | 0.026 | 12.25 |
| 光催化剂 | Rs/kΩ | Rct/MΩ |
|---|---|---|
| TiO2 | 7.714 | 47.24 |
| CN | 10.800 | 42.73 |
| SCN | 8.153 | 40.92 |
| CN-Ti-50 | 9.568 | 38.05 |
| SCN-Ti-50 | 8.992 | 35.42 |
| 光催化剂 | Rs/kΩ | Rct/MΩ |
|---|---|---|
| TiO2 | 7.714 | 47.24 |
| CN | 10.800 | 42.73 |
| SCN | 8.153 | 40.92 |
| CN-Ti-50 | 9.568 | 38.05 |
| SCN-Ti-50 | 8.992 | 35.42 |
| 1 | RAN Jingrun, ZHANG Jun, YU Jiaguo, et al. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting[J]. Chemical Society Reviews, 2014, 43(22): 7787-7812. |
| 2 | WANG Xinyu, LI Shengnan, CHEN Ping, et al. Photocatalytic and antifouling properties of TiO2-based photocatalytic membranes[J]. Materials Today Chemistry, 2022, 23: 100650. |
| 3 | JEON Jong-Pil, KWEON Do Hyung, JANG Boo Jae, et al. Enhancing the photocatalytic activity of TiO2 catalysts[J]. Advanced Sustainable Systems, 2020, 4(12): 2000197. |
| 4 | LI Huijie, ZHAO Jingli, GENG Yan, et al. Construction of CoP/B doped g-C3N4 nanodots/g-C3N4 nanosheets ternary catalysts for enhanced photocatalytic hydrogen production performance[J]. Applied Surface Science, 2019, 496: 143738. |
| 5 | XIA Xiang, XU Baogang, ZHANG Hongyu, et al. NiCoP/g-C3N4 Schottky heterojunctions towards efficient photocatalytic NO oxidation[J]. Journal of Alloys and Compounds, 2022, 928: 167207. |
| 6 | GUO Qing, ZHOU Chuanyao, MA Zhibo, et al. Fundamentals of TiO2 photocatalysis: Concepts, mechanisms, and challenges[J]. Advanced Materials, 2019, 31(50): 1901997. |
| 7 | CUI Shengchao, XIE Baowen, LI Rui, et al. G-C3N4/CeO2 binary composite prepared and its application in automobile exhaust degradation[J]. Materials, 2020, 13(6): 1274. |
| 8 | WANG Xinchen, MAEDA Kazuhiko, THOMAS Arne, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2009, 8(1): 76-80. |
| 9 | WANG Mian, ZENG Yubin, DONG Guohui, et al. Br-doping of g-C3N4 towards enhanced photocatalytic performance in Cr(Ⅵ) reduction[J]. Chinese Journal of Catalysis, 2020, 41(10): 1498-1510. |
| 10 | ZHAO Zhengliang, SHU Zhu, ZHOU Jun, et al. Facile one-pot synthesis of C, O-codoped nano-structured g-C3N4 with superior photocatalytic hydrogen evolution[J]. Materials Research Bulletin, 2022, 145: 111565. |
| 11 | ZHANG Ruoyu, NIU Siying, ZHANG Xingchao, et al. Combination of experimental and theoretical investigation on Ti-doped g-C3N4 with improved photo-catalytic activity[J]. Applied Surface Science, 2019, 489: 427-434. |
| 12 | JIANG Zhixiang, JIA Changchao, WANG Bo, et al. Hexagonal g-C3N4 nanotubes with Pt decorated surface towards enhanced photo- and electro-chemistry performance[J]. Journal of Alloys and Compounds, 2020, 826: 154145. |
| 13 | TIAN Cheng, ZHAO Hui, SUN Hongli, et al. Enhanced adsorption and photocatalytic activities of ultrathin graphitic carbon nitride nanosheets: Kinetics and mechanism[J]. Chemical Engineering Journal, 2020, 381: 122760. |
| 14 | YANG Zekang, XING Zipeng, FENG Qingmao, et al. Sandwich-like mesoporous graphite-like carbon nitride (Meso-g-C3N4)/WP/Meso-g-C3N4 laminated heterojunctions solar-driven photocatalysts[J]. Journal of Colloid and Interface Science, 2020, 568: 255-263. |
| 15 | GUO Feng, SHI Weilong, WANG Huibo, et al. Fabrication of a CuBi2O4/g-C3N4 p-n heterojunction with enhanced visible light photocatalytic efficiency toward tetracycline degradation[J]. Inorganic Chemistry Frontiers, 2017, 4(10): 1714-1720. |
| 16 | HUA Erbing, JIN Shu, WANG Xiaorong, et al. Ultrathin 2D type-Ⅱ p-n heterojunctions La2Ti2O7/In2S3 with efficient charge separations and photocatalytic hydrogen evolution under visible light illumination[J]. Applied Catalysis B: Environmental, 2019, 245: 733-742. |
| 17 | VAN Kim Nguyen, Ha Tran HUU, NGUYEN THI Viet Nga, et al. Facile construction of S-scheme SnO2/g-C3N4 photocatalyst for improved photoactivity[J]. Chemosphere, 2022, 289: 133120. |
| 18 | ARIF Muhammad, LI Qingyong, YAO Jiacheng, et al. Enhance photocatalysis performance and mechanism of CdS and Ag synergistic co-catalyst supported on mesoporous g-C3N4 nanosheets under visible-light irradiation[J]. Journal of Environmental Chemical Engineering, 2017, 5(6): 5358-5368. |
| 19 | ZHAO Ruiyang, SUN Xiaoxia, JIN Yanrou, et al. Au/Pd/g-C3N4 nanocomposites for photocatalytic degradation of tetracycline hydrochloride[J]. Journal of Materials Science, 2019, 54(7): 5445-5456. |
| 20 | HAN Changcun, WU Linen, GE Lei, et al. AuPd bimetallic nanoparticles decorated graphitic carbon nitride for highly efficient reduction of water to H2 under visible light irradiation[J]. Carbon, 2015, 92: 31-40. |
| 21 | QI Huilan, LIU Yanan, LI Chengyun, et al. Precursor-reforming protocol to synthesis of porous N-doped g-C3N4 for highly improved photocatalytic water treatments[J]. Materials Letters, 2020, 264: 127329. |
| 22 | WANG X, GONG J, DONG Y, et al. Energy band engineering of hydroxyethyl group grafted on the edge of 3D g-C3N4 nanotubes for enhanced photocatalytic H2 production[J]. Materials Today Physics, 2022, 27: 100806. |
| 23 | 蒋柱武, 史安童, 沈俊宏. Cu-ZnO/g-C3N4复合材料可见光催化降解环丙沙星效率及机理研究[J]. 材料导报, 2022, 36(20): 84-90. |
| JIANG Zhuwu, SHI Antong, SHEN Junhong. Study on efficiency and mechanism of visible-light photocatalytic degradation of ciprofloxacin by using Cu-ZnO/g-C3N4 composite[J]. Materials Reports, 2022, 36(20): 84-90. | |
| 24 | LI Yang, LU Yue, MA Zhaoyu, et al. Enhancing photocatalytic hydrogen production of g-C3N4 by selective deposition of Pt cocatalyst[J]. Nanomaterials, 2021, 11(12): 3266. |
| 25 | MA Zhixue, ZONG Xupeng, HONG Qiang, et al. Electrostatic potential of the incorporated asymmetry molecules induced high charge separation efficiency of the modified carbon nitride copolymers[J]. Applied Catalysis B: Environmental, 2022, 319: 121922. |
| 26 | FINA Federica, CALLEAR Samantha K, CARINS George M, et al. Structural investigation of graphitic carbon nitride via XRD and neutron diffraction[J]. Chemistry of Materials, 2015, 27(7): 2612-2618. |
| 27 | ZIMBONE Massimo, CANTARELLA Maria, SFUNCIA Gianfranco, et al. Low-temperature atomic layer deposition of TiO2 activated by laser annealing: Applications in photocatalysis[J]. Applied Surface Science, 2022, 596: 153641. |
| 28 | ZOU Jing, DENG Wenming, JIANG Jizhou, et al. Built-in electric field-assisted step-scheme heterojunction of carbon nitride-copper oxide for highly selective electrochemical detection of p-nonylphenol[J]. Electrochimica Acta, 2020, 354: 136658. |
| 29 | YANG Yuhao, LI Xiaolong, LU Chan, et al. G-C3N4 nanosheets coupled with TiO2 nanosheets as 2D/2D heterojunction photocatalysts toward high photocatalytic activity for hydrogen production[J]. Catalysis Letters, 2019, 149(10): 2930-2939. |
| 30 | RAZIQ Fazal, HUMAYUN Muhammad, Asad ALI, et al. Synthesis of S-doped porous g-C3N4 by using ionic liquids and subsequently coupled with Au-TiO2 for exceptional cocatalyst-free visible-light catalytic activities[J]. Applied Catalysis B: Environmental, 2018, 237: 1082-1090. |
| 31 | BAI Jirong, ZHOU Pin, XU Peng, et al. Synergy of dopants and porous structures in graphitic carbon nitride for efficient photocatalytic H2 evolution[J]. Ceramics International, 2021, 47(3): 4043-4048. |
| 32 | FENG Chengyang, TANG Lin, DENG Yaocheng, et al. Synthesis of leaf-vein-like g-C3N4 with tunable band structures and charge transfer properties for selective photocatalytic H2O2 evolution[J]. Advanced Functional Materials, 2020, 30(39): 2001922. |
| 33 | ZHANG Guigang, LI Guosheng, LAN Zhian, et al. Optimizing optical absorption, exciton dissociation, and charge transfer of a polymeric carbon nitride with ultrahigh solar hydrogen production activity[J]. Angewandte Chemie International Edition, 2017, 56(43): 13445-13449. |
| 34 | 何源, 许磊, 夏仡, 等. 碳量子点修饰g-C3N4/SnO2复合材料光催化性能[J]. 化工进展, 2021, 40(2): 908-916. |
| HE Yuan, XU Lei, XIA Yi, et al. Photocatalytic performance of carbon quantum dots modified g-C3N4/SnO2 composites[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 908-916. | |
| 35 | STROYUK Oleksandr, RAIEVSKA Oleksandra, ZAHN Dietrich R T. Graphitic carbon nitride nanotubes: A new material for emerging applications[J]. RSC Advances, 2020, 10(56): 34059-34087. |
| 36 | MA Xinguo, Yanhui LYU, XU Jing, et al. A strategy of enhancing the photoactivity of g-C3N4 via doping of nonmetal elements: A first-principles study[J]. The Journal of Physical Chemistry C, 2012, 116(44): 23485-23493. |
| [1] | MA Xiaoyu, ZHANG Yan, ZHOU Awu, LI Hanbing, YANG Feihua, LI Jianrong. Research progress on preparation and photocatalytic performance of MOF-on-MOF heterojunctions [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1417-1431. |
| [2] | FANG Biyao, QIU Jianhao, LI Yixin, YAO Jianfeng. Lignocellulose-derived biochar-modified semiconductors and their photocatalytic applications [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 957-970. |
| [3] | JIANG Liping, ZHANG Xueqiao, ZHONG Xiaojuan, WEI Yufan, XIAO Li, GUO Xujing, YANG Yijin. Optimization of acid leaching process of iron from vanadium slag and preparation of composite photocatalysts [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 538-548. |
| [4] | LIU Wei, ZHANG Min, ZHU Zhaoqi, WANG Yi, LIANG Weidong, SUN Hanxue. Preparation and current applications of black titanium dioxide nanomaterials [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 341-353. |
| [5] | MAO Huakai, YU Yang, ZHANG Yue, XIA Guangkun, WU Yuntao, LOU Leyao, NIU Wenjuan, LIU Nian. Synergistic biochar photocatalytic oxidation-adsorption for nitrite degradation [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4757-4765. |
| [6] | FU Tao, LI Li, GAO Lining, ZHU Fuwei, CAO Weiye, CHEN Huaxin. Cement-based boron-doped graphite phase carbon nitride material degrades NO [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4403-4410. |
| [7] | WU Zeliang, GUAN Qihui, CHEN Shixia, WANG Jun. Advances in selective hydrogenation of alkynes to alkenes [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4366-4381. |
| [8] | ZHANG Shirui, FAN Zhenlian, SONG Huiping, ZHANG Lina, GAO Hongyu, CHENG Shuyan, CHENG Fangqin. Research progress of fly ash supported photocatalytic materials [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4043-4058. |
| [9] | XIE Zhongkai, SHI Weidong. Research progress of charge polarized photocatalysts in photoconversion carbon dioxide into multi-carbon chemicals [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2714-2722. |
| [10] | WU Chenhe, LIU Yumin, YANG Xinmin, CUI Jiwei, JIANG Shaokun, YE Jinhua, LIU Lequan. Particulate photocatalysts for light-driven overall water splitting [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1810-1822. |
| [11] | GENG Qijin, CUI Wenwen, LIU Ying, YANG Jinmei, WANG Yuanfang, YANG Hualei, DING Jiazhong, ZANG Jiaxing, SUN Houwei. Evaluation method for dynamic scale of photocatalytic fluidized agglomerates [J]. Chemical Industry and Engineering Progress, 2024, 43(12): 6583-6588. |
| [12] | MA Xianggang, DING Yuan, ZHANG Junge, LIU Yingliang, XU Shengang, CAO Shaokui. Progress of photocatalytic degradation of bisphenol A by modified g-C3N4 [J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6271-6292. |
| [13] | LI Kaipeng, LU Xiaomin, FU Jiao, PEI Feng, CHEN Xinzhi, LIAN Peichao. Preparation of N-doped reduced graphene oxide /black phosphorus quantum dot composite by low temperature photocatalysis and its performance as anode materials for lithium-ion batteries [J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6336-6343. |
| [14] | XU Shiqi, ZHU Ying, CHEN Ninghua, LU Caimei, JIANG Luying, WANG Junhui, QIN Yuelong, ZHANG Hanbing. Effect of environmental factors on the photocatalytic degradation behavior of tetracycline in water [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 551-559. |
| [15] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |