| 1 |
杨盼盼, 孙琦, 张玉龙, 等. 甲醇合成中CO2作用的研究进展[J]. 化工进展, 2018, 37(S1): 94-101.
|
|
YANG Panpan, SUN Qi, ZHANG Yulong, et al. Research progress of the role of CO2 in methanol synthesis[J]. Chemical Industry and Engineering Progress, 2018, 37(S1): 94-101.
|
| 2 |
LUAN Xuebin, REN Ziteng, DAI Xiaoping, et al. Selective conversion of syngas into higher alcohols via a reaction-coupling strategy on multifunctional relay catalysts[J]. ACS Catalysis, 2020, 10(4): 2419-2430.
|
| 3 |
XUE Xiaoxiao, WENG Yujing, YANG Shicheng, et al. Research progress of catalysts for synthesis of low-carbon alcohols from synthesis gas[J]. RSC Advances, 2021, 11(11): 6163-6172.
|
| 4 |
PENG Junyi, ZHANG Qiang, ZHOU Yang, et al. Cold plasma-activated Cu-Co catalysts with CN vacancies for enhancing CO2 electroreduction to low-carbon alcohol[J]. Journal of Energy Chemistry, 2023, 85: 108-115.
|
| 5 |
SI Zhiyan, AMOO Cederick Cyril, HAN Yu, et al. Sputtering FeCu nanoalloys as active sites for alkane formation in CO2 hydrogenation[J]. Journal of Energy Chemistry, 2022, 70: 162-173.
|
| 6 |
WU Fapeng, ZHAO Yunpeng, FU Zongpin, et al. Catalytic transfer hydrogenolysis mechanism of benzyl phenyl ether over NiCu/Al2O3 using isopropanol as hydrogen source[J]. Fuel Processing Technology, 2023, 250: 107874.
|
| 7 |
LI Haobo, JIANG Yunling, LI Xinyu, et al. C2+ selectivity for CO2 electroreduction on oxidized Cu-based catalysts[J]. Journal of the American Chemical Society, 2023, 145(26): 14335-14344.
|
| 8 |
WANG Sen, LIU Jing, GONG Jie, et al. CuZnAl@S-1 catalyst for the synthesis of higher alcohols by CO hydrogenation[J]. The Journal of Physical Chemistry C, 2023, 127(23): 11046-11057.
|
| 9 |
YE Jingwei, SONG Song, CUI Zhonghui, et al. Facile synthesis of efficient and robust CuZnAl catalysts by the sol gel method for the water gas shift reaction[J]. Industrial & Engineering Chemistry Research, 2023, 62(38): 15386-15394.
|
| 10 |
DENG Jiali, GU Changdong, XU Haoran, et al. MgCr2O4-modified CuO/Cu2O for high-temperature thermochemical energy storage with high redox activity and sintering resistance[J]. ACS Applied Materials & Interfaces, 2022, 14(38): 43151-43162.
|
| 11 |
Alvin Ming Hao LIM, Junwen YEO, ZENG Huachun. Preparation of CuZn-doped MgAl-layered double hydroxide catalysts through the memory effect of hydrotalcite for effective hydrogenation of CO2 to methanol[J]. ACS Applied Energy Materials, 2023, 6(2): 782-794.
|
| 12 |
WEI Yanan, YOU Kuiyi, XU Wenchao, et al. Highly efficient reductive amination of ethanol to ethylamines over non-noble metallic NiCu/MgAlO catalyst[J]. Industrial & Engineering Chemistry Research, 2023, 62(12): 4947-4954.
|
| 13 |
STANGELAND Kristian, CHAMSSINE Fawzi, FU Wenzhao, et al. CO2 hydrogenation to methanol over partially embedded Cu within Zn-Al oxide and the effect of indium[J]. Journal of CO2 Utilization, 2021, 50: 101609.
|
| 14 |
NEETHU Padinjare Purayil, VENKATACHALAM Ganesh, VENKATESHA Naragalu Javaregowda, et al. Cobalt-based hydrotalcite: A potential non-noble metal-based heterogeneous catalyst for selective hydrogenation of aromatic aldehydes[J]. Industrial & Engineering Chemistry Research, 2023, 62(12): 4976-4986.
|
| 15 |
DU Yi, WOOLER Bradley, WEISS Brian, et al. A unique method to disperse Au nanoparticles at ultra-high loading via LDH intercalation chemistry[J]. Dalton Transactions, 2019, 48(7): 2505-2509.
|
| 16 |
CHEBOUT Redouane, TICHIT Didier, LAYRAC Géraldine, et al. New basic catalysts obtained from layered double hydroxides nanocomposites[J]. Solid State Sciences, 2010, 12(6): 1013-1017.
|
| 17 |
WANG Shuyuan, HONG Zhe, YIN Lingling, et al. Impact of Cu complex anions on CuZnAl intercalated hydrotalcite-like catalysts for low-carbon alcohols synthesis from syngas[J]. Applied Catalysis A: General, 2024, 682: 119822.
|
| 18 |
Monica RĂCIULETE, LAYRAC Géraldine, TICHIT Didier, et al. Comparison of Cu x ZnAlO mixed oxide catalysts derived from multicationic and hybrid LDH precursors for methane total oxidation[J]. Applied Catalysis A: General, 2014, 477: 195-204.
|
| 19 |
ZHAO Shunzheng, YI Honghong, TANG Xiaolong, et al. Characterization of ZnNiFe hydrotalcite-derived oxides and their application in the hydrolysis of carbonyl sulfide[J]. Applied Clay Science, 2012, 56: 84-89.
|
| 20 |
CHENG Shuyan, KOU Jiawei, GAO Zhihua, et al. Preparation of complexant-modified Cu/ZnO/Al2O3 catalysts via hydrotalcite-like precursors and its highly efficient application in direct synthesis of isobutanol and ethanol from syngas[J]. Applied Catalysis A: General, 2018, 556: 113-120.
|
| 21 |
GAO Wa, ZHAO Yufei, LIU Junmin, et al. Catalytic conversion of syngas to mixed alcohols over CuFe-based catalysts derived from layered double hydroxides[J]. Catalysis Science & Technology, 2013, 3(5): 1324-1332.
|
| 22 |
KOWALIK Paweł, KONKOL Marcin, KONDRACKA Małgorzata, et al. Memory effect of the CuZnAl-LDH derived catalyst precursor—In situ XRD studies[J]. Applied Catalysis A: General, 2013, 464: 339-347.
|
| 23 |
TIAN Min, TIAN Xing, MA Enjuan, et al. Oxygen vacancy control of catalytic activity of Cu/ZnO for higher alcohols synthesis via incorporating Ga[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(37): 13616-13627.
|
| 24 |
LIU Yongjun, LI Zhiwen, LUO Peng, et al. Size-dependent and sensitivity of copper particle in ternary CuZnAl catalyst for syngas to ethanol[J]. Applied Catalysis B: Environmental, 2023, 336: 122949.
|
| 25 |
VAN DEN BERG Roy, PRIETO Gonzalo, KORPERSHOEK Gerda, et al. Structure sensitivity of Cu and CuZn catalysts relevant to industrial methanol synthesis[J]. Nature Communications, 2016, 7: 13057.
|
| 26 |
KWAK Byoung Kyu, PARK Dae Sung, YUN Yang Sik, et al. Preparation and characterization of nanocrystalline CuAl2O4 spinel catalysts by sol gel method for the hydrogenolysis of glycerol[J]. Catalysis Communications, 2012, 24: 90-95.
|
| 27 |
NARKHEDE Nilesh, ZHENG Huayan, ZHANG Huacheng, et al. Isomorphous substitution method to fabricating pure phase Al-doped zinc malachite: Defects driven promotion improvement and enhanced synergy between Cu and ZnO[J]. ChemCatChem, 2020, 12(22): 5697-5709.
|
| 28 |
张华成, 孔令奇, 李忠, 等. 基于CuAl-LDH载体制备高分散Cu/ZnO/Al2O3催化剂及其催化性能[J]. 化工进展, 2021, 40(2): 881-889.
|
|
ZHANG Huacheng, KONG Lingqi, LI Zhong, et al. Preparation of highly dispersed Cu/ZnO/Al2O3 catalyst based on CuAl-LDH carrier and its catalytic performance[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 881-889.
|