Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (2): 957-970.DOI: 10.16085/j.issn.1000-6613.2024-0295
• Materials science and technology • Previous Articles Next Articles
FANG Biyao(), QIU Jianhao(
), LI Yixin, YAO Jianfeng(
)
Received:
2024-02-19
Revised:
2024-03-24
Online:
2025-03-10
Published:
2025-02-25
Contact:
QIU Jianhao, YAO Jianfeng
通讯作者:
邱健豪,姚建峰
作者简介:
方碧瑶(2002—),女,硕士研究生,研究方向为光催化材料构筑及应用。E-mail:byaofang@qq.com。
基金资助:
CLC Number:
FANG Biyao, QIU Jianhao, LI Yixin, YAO Jianfeng. Lignocellulose-derived biochar-modified semiconductors and their photocatalytic applications[J]. Chemical Industry and Engineering Progress, 2025, 44(2): 957-970.
方碧瑶, 邱健豪, 李伊馨, 姚建峰. 木质纤维素基生物质炭改性半导体及其光催化应用[J]. 化工进展, 2025, 44(2): 957-970.
半导体 | 形态 | 制备方法 | 应用 | 降解/生成率 | 光源 | 参考文献 |
---|---|---|---|---|---|---|
TiO2 | 片状 | 焙烧 | 四环素降解 | 100% | 可见光 | [ |
TiO2 | 块状 | 焙烧 | Cr(Ⅵ)还原 | 100% | 可见光 | [ |
TiO2 | 珠状 | 焙烧 | 头孢曲松钠降解 | 91.92% | 可见光 | [ |
TiO2 | 原子 | 焙烧 | 二嗪磷降解 | 98.34% | 可见光 | [ |
TiO2 | 原子 | 水热 | 双酚A降解 | 79% | 太阳光 | [ |
TiO2 | 点状 | 焙烧 | 亚甲基蓝降解 | 92% | 可见光 | [ |
TiO2 | 点状 | 水热 | 罗丹明B降解、Cr(Ⅵ)还原 | 84%(膜)/100%(气凝胶) | 可见光 | [ |
TiO2 | 原子 | 水热 | 亚甲基蓝降解 | 85% | 可见光 | [ |
TiO2 | 块状 | 焙烧 | 甲基橙降解 | 100% | 紫外光 | [ |
g-C3N4 | 纤维状 | 焙烧 | H2O2制备 | 1.1mmol·L-1·h-1 | 可见光 | [ |
g-C3N4 | 纤维状 | 焙烧 | H2O2制备 | 58.67μmol·L-1·h-1 | 可见光 | [ |
g-C3N4 | 纳米管状 | 水热 | 双酚A降解 | 91% | 可见光 | [ |
g-C3N4 | 块状 | 水热 | 亚甲基蓝降解 | 72.04% | 可见光 | [ |
g-C3N4 | 原子 | 焙烧 | H2制备 | 1.41mmol·L-1·h-1 | 可见光 | [ |
g-C3N4 | 纤维状 | 水热 | 亚甲基蓝降解 | 99.9% | 可见光 | [ |
ZnO | 点状 | 水热 | 亚甲基蓝降解 | 100% | 太阳光 | [ |
ZnO | 点状 | 水热 | Cr(Ⅵ)还原 | 96.2% | 紫外光 | [ |
ZnO | 棒状 | 焙烧 | 苯酚降解 | 99.8% | 可见光 | [ |
ZnO | 原子 | 焙烧 | 甲基橙降解 | 79.78% | 紫外光 | [ |
ZnO | 原子 | 水热 | 亚甲基蓝降解 | 100% | 紫外光 | [ |
ZnIn2S4 | 点状 | 水热 | 5-羟甲基糠醛氧化 | 2980μmol·g-1 | 可见光 | [ |
Fe2O3 | 点状 | 脱水氧化 | 靛蓝胭脂红降解 | 100% | 可见光 | [ |
α-FeOOH | 点状 | 水热 | Cr(Ⅵ)还原 | 100% | 紫外光 | [ |
SiO2 | 块状 | 焙烧 | 四环素降解 | 90% | 可见光 | [ |
CoFe2O4 | 球状 | 水热 | 罗丹明B降解 | 100% | 可见光 | [ |
BiOBr | 纤维状 | 焙烧 | 罗丹明B降解 | 100% | 可见光 | [ |
ZrO2 | 原子 | 焙烧 | Cr(Ⅵ)还原 | 99.8% | 可见光 | [ |
Ni/NiO | 块状 | 焙烧 | H2制备 | 13.5mmol·g-1·h-1 | 可见光 | [ |
SrTiO3 | 纤维状 | 焙烧 | 四环素降解 | 99.7% | 紫外光 | [ |
半导体 | 形态 | 制备方法 | 应用 | 降解/生成率 | 光源 | 参考文献 |
---|---|---|---|---|---|---|
TiO2 | 片状 | 焙烧 | 四环素降解 | 100% | 可见光 | [ |
TiO2 | 块状 | 焙烧 | Cr(Ⅵ)还原 | 100% | 可见光 | [ |
TiO2 | 珠状 | 焙烧 | 头孢曲松钠降解 | 91.92% | 可见光 | [ |
TiO2 | 原子 | 焙烧 | 二嗪磷降解 | 98.34% | 可见光 | [ |
TiO2 | 原子 | 水热 | 双酚A降解 | 79% | 太阳光 | [ |
TiO2 | 点状 | 焙烧 | 亚甲基蓝降解 | 92% | 可见光 | [ |
TiO2 | 点状 | 水热 | 罗丹明B降解、Cr(Ⅵ)还原 | 84%(膜)/100%(气凝胶) | 可见光 | [ |
TiO2 | 原子 | 水热 | 亚甲基蓝降解 | 85% | 可见光 | [ |
TiO2 | 块状 | 焙烧 | 甲基橙降解 | 100% | 紫外光 | [ |
g-C3N4 | 纤维状 | 焙烧 | H2O2制备 | 1.1mmol·L-1·h-1 | 可见光 | [ |
g-C3N4 | 纤维状 | 焙烧 | H2O2制备 | 58.67μmol·L-1·h-1 | 可见光 | [ |
g-C3N4 | 纳米管状 | 水热 | 双酚A降解 | 91% | 可见光 | [ |
g-C3N4 | 块状 | 水热 | 亚甲基蓝降解 | 72.04% | 可见光 | [ |
g-C3N4 | 原子 | 焙烧 | H2制备 | 1.41mmol·L-1·h-1 | 可见光 | [ |
g-C3N4 | 纤维状 | 水热 | 亚甲基蓝降解 | 99.9% | 可见光 | [ |
ZnO | 点状 | 水热 | 亚甲基蓝降解 | 100% | 太阳光 | [ |
ZnO | 点状 | 水热 | Cr(Ⅵ)还原 | 96.2% | 紫外光 | [ |
ZnO | 棒状 | 焙烧 | 苯酚降解 | 99.8% | 可见光 | [ |
ZnO | 原子 | 焙烧 | 甲基橙降解 | 79.78% | 紫外光 | [ |
ZnO | 原子 | 水热 | 亚甲基蓝降解 | 100% | 紫外光 | [ |
ZnIn2S4 | 点状 | 水热 | 5-羟甲基糠醛氧化 | 2980μmol·g-1 | 可见光 | [ |
Fe2O3 | 点状 | 脱水氧化 | 靛蓝胭脂红降解 | 100% | 可见光 | [ |
α-FeOOH | 点状 | 水热 | Cr(Ⅵ)还原 | 100% | 紫外光 | [ |
SiO2 | 块状 | 焙烧 | 四环素降解 | 90% | 可见光 | [ |
CoFe2O4 | 球状 | 水热 | 罗丹明B降解 | 100% | 可见光 | [ |
BiOBr | 纤维状 | 焙烧 | 罗丹明B降解 | 100% | 可见光 | [ |
ZrO2 | 原子 | 焙烧 | Cr(Ⅵ)还原 | 99.8% | 可见光 | [ |
Ni/NiO | 块状 | 焙烧 | H2制备 | 13.5mmol·g-1·h-1 | 可见光 | [ |
SrTiO3 | 纤维状 | 焙烧 | 四环素降解 | 99.7% | 紫外光 | [ |
半导体 | 形态 | 制备方法 | 应用 | 降解/生成率 | 光源 | 参考文献 |
---|---|---|---|---|---|---|
TiO2 | 块状 | 水热 | 亚甲基蓝降解 | 100% | 可见光 | [ |
TiO2 | 球状 | 水热 | 布洛芬、双氯芬酸降解 | 100%/100% | 太阳光 | [ |
TiO2 | 块状 | — | 对乙酰氨基酚降解 | 43.3% | 太阳光 | [ |
TiO2 | 纤维状 | 焙烧 | 罗丹明B降解 | 100% | 可见光 | [ |
g-C3N4 | 点状 | 水热 | Cr(Ⅵ)还原、左氟沙星降解 | 100%/94.8% | 可见光 | [ |
g-C3N4 | 点状 | 焙烧 | 亚甲基蓝、木质素降解 | 94.6%/93.1% | 可见光 | [ |
g-C3N4 | 块状 | 焙烧 | 四环素降解 | 87.05% | 可见光 | [ |
ZnO | 块状 | 焙烧 | 甲基橙 | 100% | 太阳光 | [ |
ZnO | 片状 | 焙烧 | 甲基橙降解 | 100% | 太阳光 | [ |
ZnO | 块状 | 焙烧 | 亚甲基蓝降解 | 96.3% | 可见光 | [ |
ZnO | 花状 | 焙烧 | 磺胺二甲嘧啶降解、H2制备 | 95%/29.0μmol·h-1 | 太阳光 | [ |
BiOBr | 块状 | 水热 | 四环素降解、Cr(Ⅵ)还原 | 78.1%/100% | 可见光 | [ |
BiOBr | 原子 | 水热 | 罗丹明B降解 | 99.2% | 可见光 | [ |
Bi2O3 | 原子 | 焙烧 | 土霉素降解 | 40% | 可见光 | [ |
半导体 | 形态 | 制备方法 | 应用 | 降解/生成率 | 光源 | 参考文献 |
---|---|---|---|---|---|---|
TiO2 | 块状 | 水热 | 亚甲基蓝降解 | 100% | 可见光 | [ |
TiO2 | 球状 | 水热 | 布洛芬、双氯芬酸降解 | 100%/100% | 太阳光 | [ |
TiO2 | 块状 | — | 对乙酰氨基酚降解 | 43.3% | 太阳光 | [ |
TiO2 | 纤维状 | 焙烧 | 罗丹明B降解 | 100% | 可见光 | [ |
g-C3N4 | 点状 | 水热 | Cr(Ⅵ)还原、左氟沙星降解 | 100%/94.8% | 可见光 | [ |
g-C3N4 | 点状 | 焙烧 | 亚甲基蓝、木质素降解 | 94.6%/93.1% | 可见光 | [ |
g-C3N4 | 块状 | 焙烧 | 四环素降解 | 87.05% | 可见光 | [ |
ZnO | 块状 | 焙烧 | 甲基橙 | 100% | 太阳光 | [ |
ZnO | 片状 | 焙烧 | 甲基橙降解 | 100% | 太阳光 | [ |
ZnO | 块状 | 焙烧 | 亚甲基蓝降解 | 96.3% | 可见光 | [ |
ZnO | 花状 | 焙烧 | 磺胺二甲嘧啶降解、H2制备 | 95%/29.0μmol·h-1 | 太阳光 | [ |
BiOBr | 块状 | 水热 | 四环素降解、Cr(Ⅵ)还原 | 78.1%/100% | 可见光 | [ |
BiOBr | 原子 | 水热 | 罗丹明B降解 | 99.2% | 可见光 | [ |
Bi2O3 | 原子 | 焙烧 | 土霉素降解 | 40% | 可见光 | [ |
1 | FUJISHIMA Akira, HONDA Kenichi. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38. |
2 | QIU Jianhao, ZHANG Xingguang, FENG Yi, et al. Modified metal-organic frameworks as photocatalysts[J]. Applied Catalysis B: Environmental, 2018, 231: 317-342. |
3 | QIU Jianhao, DAI Dingliang, YAO Jianfeng. Tailoring metal-organic frameworks for photocatalytic H2O2 production[J]. Coordination Chemistry Reviews, 2024, 501: 215597. |
4 | ACHARYA Rashmi, PARIDA Kulamani. A review on TiO2/g-C3N4 visible-light- responsive photocatalysts for sustainable energy generation and environmental remediation[J]. Journal of Environmental Chemical Engineering, 2020, 8(4): 103896. |
5 | QIU Jianhao, LI Ming, DING Meili, et al. Cellulose tailored semiconductors for advanced photocatalysis[J]. Renewable and Sustainable Energy Reviews, 2022, 154: 111820. |
6 | 王雪, 徐期勇, 张超. 木质纤维素类生物质水热炭化机理及水热炭应用进展[J]. 化工进展, 2023, 42(5): 2536-2545. |
WANG Xue, XU Qiyong, ZHANG Chao. Hydrothermal carbonization of the lignocellulosic biomass and application of the hydro-char[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2536-2545. | |
7 | QIU Jianhao, LI Ming, YANG Lvye, et al. Facile construction of three-dimensional netted ZnIn2S4 by cellulose nanofibrils for efficiently photocatalytic reduction of Cr(Ⅵ)[J]. Chemical Engineering Journal, 2019, 375: 121990. |
8 | LI Ming, QIU Jianhao, XU Jie, et al. Cellulose/TiO 2 -based carbonaceous composite film and aerogel for highly efficient photocatalysis under visible light[J]. Industrial & Engineering Chemistry Research, 2020, 59(31): 13997-14003. |
9 | ULUM Bahrul, ILYAS Sultan, FAHRI Ahmad Nurul, et al. Composite carbon-lignin/zinc oxide nanocrystalline ball-like hexagonal mediated from jatropha curcas leaf as photocatalyst for industrial dye degradation[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30(12): 4905-4916. |
10 | ARAÚJO Tiago Cabral, S OLIVEIRA Henrique DOS, TELES José Joaquim Sá, et al. Hybrid heterostructures based on hematite and highly hydrophilic carbon dots with photocatalytic activity[J]. Applied Catalysis B: Environmental, 2016, 182: 204-212. |
11 | WANG Chengwei, YU Ruobing. Highly efficient visible light photocatalysis of tablet-like carbon-doped TiO2 photocatalysts via pyrolysis of cellulose/MIL-125(Ti) at low temperature[J]. Journal of Solid State Chemistry, 2022, 309: 122992. |
12 | 庄雨婷, 王建华, 向智艳, 等. 半纤维素及其衍生物转化为γ-戊内酯及其动力学研究进展[J]. 化工进展, 2022, 41(7): 3519-3533. |
ZHUANG Yuting, WANG Jianhua, XIANG Zhiyan, et al. Research progress in preparation and kinetics of γ-valerolactone synthesis from hemicellulose and its derivatives[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3519-3533. | |
13 | GAO Xiaohu, CUI Yuanyuan, LEVENSON Richard M, et al. In vivo cancer targeting and imaging with semiconductor quantum dots[J]. Nature Biotechnology, 2004, 22(8): 969-976. |
14 | CRUT Aurélien, Bénedicte GÉRON-LANDRE, BONNET Isabelle, et al. Detection of single DNA molecules by multicolor quantum-dot end-labeling[J]. Nucleic Acids Research, 2005, 33(11): e98. |
15 | 张凌峰, 胡忠攀, 刘歆颖, 等. TiO2基光解水析氢非贵金属共催化剂的研究[J]. 化学进展, 2016, 28(10): 1474-1488. |
ZHANG Lingfeng, HU Zhongpan, LIU Xinying, et al. Noble-metal-free co-catalysts for TiO2-based photocatalytic H2-evolution half reaction in water splitting[J]. Progress in Chemistry, 2016, 28(10): 1474-1488. | |
16 | LI Ming, QIU Jianhao, YANG Lvye, et al. Fabrication of TiO2 embedded ZnIn2S4 nanosheets for efficient Cr(Ⅵ) reduction[J]. Materials Research Bulletin, 2020, 122: 110671. |
17 | 芦安源, 李萍, 任威宇, 等. 纳米花状BiOCOOH/g-C3N4复合材料的制备及其光降解亚甲基蓝性能研究[J]. 化工新型材料, 2022, 50(S1): 494-497. |
LU Anyuan, LI Ping, REN Weiyu, et al. Preparation of nano-flower-shaped BIOCOOH/g-C3N4 composite and its photodegradation of methylene blue[J]. New Chemical Materials, 2022, 50(S1): 494-497. | |
18 | QIU Jianhao, DAI Dingliang, ZHANG Lu, et al. Photocatalytic conversion of sodium lignosulfonate into vanillin using mesoporous TiO2 derived from MIL-125[J]. Microporous and Mesoporous Materials, 2021, 319: 111043. |
19 | QIU Jianhao, DAI Dingliang, ZHANG Lu, et al. Inlaying metal-organic framework derived pancake-like TiO2 into three-dimensional BiOI for visible-light-driven generation of vanillin from sodium lignosulfonate[J]. Journal of Colloid and Interface Science, 2022, 605: 648-656. |
20 | ZHANG Jinju, LI Yanxiang, LI Lei, et al. Dual functional N-doped TiO2-carbon composite fibers for efficient removal of water pollutants[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(10): 12893-12905. |
21 | WANG Yanfen, ZHANG Miao, YU Hai, et al. Facile fabrication of Ag/graphene oxide/TiO2 nanorod array as a powerful substrate for photocatalytic degradation and surface-enhanced Raman scattering detection[J]. Applied Catalysis B: Environmental, 2019, 252: 174-186. |
22 | YANG Jinhui, LUO Xiaogang. Ag-doped TiO2 immobilized cellulose-derived carbon beads: One-pot preparation, photocatalytic degradation performance and mechanism of ceftriaxone sodium[J]. Applied Surface Science, 2021, 542: 148724. |
23 | AMIRI Sama, ANBIA Mansoor. Enhanced degradation of diazinon in aqueous solution using C-TiO2/g-C3N4 nanocomposite under visible light: Synthesis, characterization, kinetics, and mechanism studies[J]. Materials Research Bulletin, 2023, 165: 112289. |
24 | MOHAMED Mohamad Azuwa, RAHMAN Nurashina Abdul, ZAIN M F M, et al. Hematite microcube decorated TiO2 nanorods as heterojunction photocatalyst with in situ carbon doping derived from polysaccharides bio-templates hydrothermal carbonization[J]. Journal of Alloys and Compounds, 2020, 820: 153143. |
25 | LI Haitao, HE Xiaodie, KANG Zhenhui, et al. Water-soluble fluorescent carbon quantum dots and photocatalyst design[J]. Angewandte Chemie International Edition, 2010, 49(26): 4430-4434. |
26 | BAKER Sheila N, BAKER Gary A. Luminescent carbon nanodots: Emergent nanolights[J]. Angewandte Chemie International Edition, 2010, 49(38): 6726-6744. |
27 | GONG Jingwei, GUO Yanzhu, LU Jie, et al. TEMPO oxidized nanofiber carbon quantum dots/TiO2 composites with enhanced photocatalytic activity for degradation of methylene blue[J]. Chemical Physics Letters, 2022, 788: 139297. |
28 | ZHANG Jian, YUAN Wei, XIA Tian, et al. A TiO2 coated carbon aerogel derived from bamboo pulp fibers for enhanced visible light photo-catalytic degradation of methylene blue[J]. Nanomaterials, 2021, 11(1): 239. |
29 | SHAN Yiwei, GUO Ying, WANG Yu, et al. Nanocellulose-derived carbon/g-C3N4 heterojunction with a hybrid electron transfer pathway for highly photocatalytic hydrogen peroxide production[J]. Journal of Colloid and Interface Science, 2021, 599: 507-518. |
30 | XIA Guanglu, QIU Jianhao, DAI Dingliang, et al. Electron-deficient covalent organic frameworks anchored on melamine sponges for visible-light‐driven H2O2 evolution[J]. AIChE Journal, 2023, 69(11): e18192. |
31 | ZHOU Jianwen, SHAN Tianshang, LUO Hao, et al. Enhanced single-electron transfer for efficiently photocatalytic H2O2 production over g-C3N4 decorated with TEMPO-oxidized cellulosic carbon[J]. Journal of Environmental Chemical Engineering, 2023, 11(2): 109512. |
32 | MOHAMED Mohamad Azuwa, ZAIN M F M, JEFFERY MINGGU Lorna, et al. Constructing bio-templated 3D porous microtubular C-doped g-C3N4 with tunable band structure and enhanced charge carrier separation[J]. Applied Catalysis B: Environmental, 2018, 236: 265-279. |
33 | YANG Pan, WANG Jingchuan, YUE Guozong, et al. Constructing mesoporous g-C3N4/ZnO nanosheets catalyst for enhanced visible-light driven photocatalytic activity[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 388: 112169. |
34 | JIN Zhengyuan, CHEN Jiaqi, HUANG Shaolong, et al. A facile approach to fabricating carbonaceous material/g-C3N4 composites with superior photocatalytic activity[J]. Catalysis Today, 2018, 315: 149-154. |
35 | DENG Puhui, LI Haiyan, WANG Zidong, et al. Enhanced photocatalytic hydrogen evolution by carbon-doped carbon nitride synthesized via the assistance of cellulose[J]. Applied Surface Science, 2020, 504: 144454. |
36 | DOU Tianwei, ZANG Linlin, ZHANG Yanhong, et al. Hybrid g-C3N4 nanosheet/carbon paper membranes for the photocatalytic degradation of methylene blue[J]. Materials Letters, 2019, 244: 151-154. |
37 | ZHAO Siwei, ZUO Hongfen, GUO Yuanru, et al. Carbon-doped ZnO aided by carboxymethyl cellulose: Fabrication, photoluminescence and photocatalytic applications[J]. Journal of Alloys and Compounds, 2017, 695: 1029-1037. |
38 | QIU Jianhao, LI Ming, WAN Yiling, et al. One-pot fabrication of Cd x Zn1- x S/ZnO nanohybrid using mixed sulfur sources for photocatalysis[J]. Materials Research Bulletin, 2020, 125: 110776. |
39 | LI Shaopeng, CHEN Xueqi, CHENG Zhuoying, et al. Promoting effect of cellulose-based carbon dots at different concentrations on multifunctional photocatalytic degradation of dyes by ZnO[J]. Optical Materials, 2021, 121: 111591. |
40 | ZHANG Xuefeng, PENG Junwen, QI Xinmiao, et al. Nanocellulose/carbon dots hydrogel as superior intensifier of ZnO/AgBr nanocomposite with adsorption and photocatalysis synergy for Cr(Ⅵ) removal[J]. International Journal of Biological Macromolecules, 2023, 233: 123566. |
41 | SONG Li, LIU Fuqiang, ZHU Changqing, et al. Facile one-step fabrication of carboxymethyl cellulose based hydrogel for highly efficient removal of Cr(Ⅵ) under mild acidic condition[J]. Chemical Engineering Journal, 2019, 369: 641-651. |
42 | PENG Junwen, YUAN Hanmeng, REN Tingting, et al. Fluorescent nanocellulose-based hydrogel incorporating titanate nanofibers for sorption and detection of Cr(Ⅵ)[J]. International Journal of Biological Macromolecules, 2022, 215: 625-634. |
43 | ZHANG Yin, ZHAO Guomin, XUAN Yan, et al. Enhanced photocatalytic performance for phenol degradation using ZnO modified with nano-biochar derived from cellulose nanocrystals[J]. Cellulose, 2021, 28(2): 991-1009. |
44 | XIAO He, ZHANG Weibo, WEI Yicui, et al. Carbon/ZnO nanorods composites templated by TEMPO-oxidized cellulose and photocatalytic activity for dye degradation[J]. Cellulose, 2018, 25(3): 1809-1819. |
45 | QIU Jianhao, ZHANG Lu, DAI Dingliang, et al. Cellulose-derived carbon dot-guided growth of ZnIn2S4 nanosheets for photocatalytic oxidation of 5-hydroxymethylfurfural into 2,5-diformylfuran[J]. ChemSusChem, 2022, 15(10): e202200399. |
46 | XU Dong, HUANG Yong, MA Qiang, et al. A 3D porous structured cellulose nanofibrils-based hydrogel with carbon dots-enhanced synergetic effects of adsorption and photocatalysis for effective Cr(Ⅵ) removal[J]. Chemical Engineering Journal, 2023, 456: 141104. |
47 | REN Jiaxin, CHEN Shipeng, LI Delong, et al. Hierarchically porous cellulose-based carbon aerogels with N-doped skeletons and encapsulated iron-based catalysts for efficient tetracycline catalytic degradation[J]. International Journal of Biological Macromolecules, 2024, 261:129829. |
48 | GAN Lu, GENG Aobo, XU Lijie, et al. The fabrication of bio-renewable and recyclable cellulose based carbon microspheres incorporated by CoFe2O4 and the photocatalytic properties[J]. Journal of Cleaner Production, 2018, 196: 594-603. |
49 | GENG Aobo, MENG Liang, HAN Jingquan, et al. Highly efficient visible-light photocatalyst based on cellulose derived carbon nanofiber/BiOBr composites[J]. Cellulose, 2018, 25(7): 4133-4144. |
50 | VELEMPINI Tarisai, PRABAKARAN Eswaran, PILLAY Kriveshini. Photocatalytic reductive applications of C-doped ZrO2/PANI composite towards Cr(Ⅵ)[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 426: 113737. |
51 | XIE Kaihong, GUO Peijing, XIONG Zhangyi, et al. Ni/NiO hybrid nanostructure supported on biomass carbon for visible-light photocatalytic hydrogen evolution[J]. Journal of Materials Science, 2021, 56(22): 12775-12788. |
52 | WU Qiong, LI Wei, TAN Jia, et al. Hydrothermal synthesis of magnetic mesoporous carbon microspheres from carboxymethylcellulose and nickel acetate[J]. Applied Surface Science, 2015, 332: 354-361. |
53 | LIU Yuepeng, ZHAO Shuo, ZHANG Chao, et al. Hollow tubular carbon doping graphitic carbon nitride with adjustable structure for highly enhanced photocatalytic hydrogen production[J]. Carbon, 2021, 182: 287-296. |
54 | HAMAD Hesham, Esther BAILÓN-GARCÍA, Sergio MORALES-TORRES, et al. Functionalized cellulose for the controlled synthesis of novel carbon-Ti nanocomposites: Physicochemical and photocatalytic properties[J]. Nanomaterials, 2020, 10(4): 729. |
55 | ZHOU Man, CHEN Jingwen, JIANG Mengting, et al. Efficient anchoring of SrTiO3 on the cracked surface of carbonized bacterial cellulose for enhanced photocatalytic activities[J]. Cellulose, 2020, 27(12): 7023-7036. |
56 | WANG Huan, QIU Xueqing, LIU Weifeng, et al. Facile preparation of well-combined lignin-based carbon/ZnO hybrid composite with excellent photocatalytic activity[J]. Applied Surface Science, 2017, 426: 206-216. |
57 | GAO Xin, REN Penggang, WANG Jin, et al. Fabrication of visible-light responsive TiO2@C photocatalyst with an ultra-thin carbon layer to efficiently degrade organic pollutants[J]. Applied Surface Science, 2020, 532: 147482. |
58 | Manuel PEÑAS-GARZÓN, ABDELRAHEEM Wael H M, BELVER Carolina, et al. TiO2-carbon microspheres as photocatalysts for effective remediation of pharmaceuticals under simulated solar light[J]. Separation and Purification Technology, 2021, 275: 119169. |
59 | ZHAI Gongxun, ZHOU Jialiang, XIE Min, et al. Improved photocatalytic property of lignin-derived carbon nanofibers through catalyst synergy[J]. International Journal of Biological Macromolecules, 2023, 233: 123588. |
60 | ZHU Lingli, SHEN Dekui, ZHANG Huiyan, et al. Fabrication of Z-scheme Bi7O9I3/g-C3N4 heterojunction modified by carbon quantum dots for synchronous photocatalytic removal of Cr(Ⅵ) and organic pollutants[J]. Journal of Hazardous Materials, 2023, 446: 130663. |
61 | LIU Wei, NING Chenxi, SANG Ranran, et al. Lignin-derived graphene quantum dots from phosphous acid-assisted hydrothermal pretreatment and their application in photocatalysis[J]. Industrial Crops and Products, 2021, 171: 113963. |
62 | XU Ying, LI Wei, XU Ting, et al. Straightforward fabrication of lignin-derived carbon-bridged graphitic carbon nitride for improved visible photocatalysis of tetracycline hydrochloride assisted by peroxymonosulfate activation[J]. Advanced Composites and Hybrid Materials, 2023, 6(6): 197. |
63 | WANG Huan, QIU Xueqing, ZHONG Ruisheng, et al. One-pot in situ preparation of a lignin-based carbon/ZnO nanocomposite with excellent photocatalytic performance[J]. Materials Chemistry and Physics, 2017, 199: 193-202. |
64 | ZHANG Binpeng, YANG Dongjie, QIU Xueqing, et al. Fabricating ZnO/lignin-derived flower-like carbon composite with excellent photocatalytic activity and recyclability[J]. Carbon, 2020, 162: 256-266. |
65 | SUN Yiming, WU Weidong, ZHOU Haifeng. Lignosulfonate-controlled BiOBr/C hollow microsphere photocatalyst for efficient removal of tetracycline and Cr(Ⅵ) under visible light[J]. Chemical Engineering Journal, 2023, 453: 139819. |
66 | YANG Qiang, LI Xiang, TIAN Qingwen, et al. Synergistic effect of adsorption and photocatalysis of BiOBr/lignin-biochar composites with oxygen vacancies under visible light irradiation[J]. Journal of Industrial and Engineering Chemistry, 2023, 117: 117-129. |
67 | WANG Tao, LIU Xiqing, HAN Donglai, et al. Biomass derived the V-doped carbon/Bi2O3 composite for efficient photocatalysts[J]. Environmental Research, 2020, 182: 108998. |
68 | Manuel PEÑAS-GARZÓN, Almudena GÓMEZ-AVILÉS, BEDIA Jorge, et al. Effect of activating agent on the properties of TiO2/activated carbon heterostructures for solar photocatalytic degradation of acetaminophen[J]. Materials, 2019, 12(3): 378. |
69 | QIU Jianhao, LI Ming, WANG Huanting, et al. Integration of plasmonic effect into MIL-125-NH2: An ultra-efficient photocatalyst for simultaneous removal of ternary system pollutants[J]. Chemosphere, 2020, 242: 125197. |
70 | QIU Jianhao, DAI Dingliang, ZHANG Lu, et al. Oxygen vacancy-rich Bi2MoO6 anchored on cuboid metal-organic frameworks for photocatalytic elimination of Cr(Ⅵ)/2-nitrophenol mixed pollutants[J]. Separation and Purification Technology, 2022, 301: 121990. |
71 | DAI Dingliang, QIU Jianhao, XIA Guanglu, et al. Competitive coordination initiated one-pot synthesis of core shell Bi-MOF@BiOX (X=I, Br and Cl) heterostructures for photocatalytic elimination of mixed pollutants[J]. Separation and Purification Technology, 2023, 316: 123819. |
[1] | ZHAO Jiaqi, HUANG Yaji, LI Zhiyuan, ZHU Zhicheng, QI Shuaijie, GAO Jiawei, LIU Jun, ZHANG Yuyao. Characteristics of heavy metal migration and transformation during co-pyrolysis of sludge with agroforestry wastes [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1064-1075. |
[2] | YANG Qun, LI Hongyan, ZHANG Feng, MAO Libo, CUI Jiali, DONG Yinghong, GUO Zirui. Removal of gatifloxacin from water by cobalt-nitrogen co-doped mushroom stick biological carbon activated PMS [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1088-1099. |
[3] | LIU Wei, ZHANG Min, ZHU Zhaoqi, WANG Yi, LIANG Weidong, SUN Hanxue. Preparation and current applications of black titanium dioxide nanomaterials [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 341-353. |
[4] | JIANG Liping, ZHANG Xueqiao, ZHONG Xiaojuan, WEI Yufan, XIAO Li, GUO Xujing, YANG Yijin. Optimization of acid leaching process of iron from vanadium slag and preparation of composite photocatalysts [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 538-548. |
[5] | ZHAO Liyang, LI Qian, HE Peixi, PAN Honghui, LIU Yan, LIU Xixiang. Tetracycline adsorption properties of sludge-based biochar ball-milled co-modified by phosphomolybdic acid-Fe3O4 [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 583-595. |
[6] | HAN Hongjing, CHE Yu, TIAN Yuxuan, WANG Haiying, ZHANG Yanan, CHEN Yanguang. Advances on catalysts and solvents for catalytic hydrogenolysis of lignin [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 315-324. |
[7] | WAN Zhen, WANG Shaoqing, LI Zhihe, ZHAO Tiansheng. Advances in HZSM-5 catalyzed pyrolysis of lignin to aromatic hydrocarbons [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 517-532. |
[8] | CHEN Muhua, JI Zhen, WANG Fang, HUANG Kaijian, FU Bo, LIU Bo, LIU Shaozhong, ZHU Xinbao. Synthesis and properties of cellulose based copolymer polycarboxylate superplasticizer [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 564-570. |
[9] | WU Zeliang, GUAN Qihui, CHEN Shixia, WANG Jun. Advances in selective hydrogenation of alkynes to alkenes [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4366-4381. |
[10] | FU Tao, LI Li, GAO Lining, ZHU Fuwei, CAO Weiye, CHEN Huaxin. Cement-based boron-doped graphite phase carbon nitride material degrades NO [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4403-4410. |
[11] | LIU Yucan, GAO Zhonglu, XU Xinyi, JI Xianguo, ZHANG Yan, SUN Hongwei, WANG Gang. Adsorption performance and mechanism of diuron from water by calcium-modified water hyacinth-based biochar [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4630-4641. |
[12] | WU Zhe, QU Shuguang, FENG Lianxiang, ZENG Xiangchu. Adsorption performance and mechanism of sodium alginate/microcrystalline cellulose composite hydrogel for aqueous methyl orange and methylene blue [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4681-4693. |
[13] | MAO Huakai, YU Yang, ZHANG Yue, XIA Guangkun, WU Yuntao, LOU Leyao, NIU Wenjuan, LIU Nian. Synergistic biochar photocatalytic oxidation-adsorption for nitrite degradation [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4757-4765. |
[14] | SHU Gangwei, LIN Yucheng, ZHANG Weihong, ZHAO Shiqiang, ZHENG Xiaoyang, CHANG Chun. Research progress in biorefinery and high value application of xylose [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3798-3811. |
[15] | HUANG Jun, ZHANG Yingjuan, LIN Yintong, WEI Xuechun, WU Yutong, WU Gaobo, MO Junlin, ZHAO Zhenxia, ZHAO Zhongxing. Preparation of silkworm excrement-based porous biocarbon and synergistic adsorption and slow-release performance for monosultap and dinotefuran [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3964-3971. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 6
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 24
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |