Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (3): 1396-1405.DOI: 10.16085/j.issn.1000-6613.2024-0471
• Industrial catalysis • Previous Articles Next Articles
LIU Jiangtao(
), PENG Chong(
), ZHANG Yongchun(
)
Received:2024-03-22
Revised:2024-04-16
Online:2025-04-16
Published:2025-03-25
Contact:
PENG Chong, ZHANG Yongchun
通讯作者:
彭冲,张永春
作者简介:刘江涛(1996—),男,硕士,研究方向为工业催化。E-mail:liujt1026@163.com。
基金资助:CLC Number:
LIU Jiangtao, PENG Chong, ZHANG Yongchun. Low-carbon olefins from CO2 hydrogenation over Zn-modulated Fe-based catalysts[J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1396-1405.
刘江涛, 彭冲, 张永春. Zn调控Fe基催化剂催化CO2加氢制低碳烯烃[J]. 化工进展, 2025, 44(3): 1396-1405.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0471
| 催化剂 | 氧化铁晶相 | 晶粒尺寸/nm |
|---|---|---|
| K-Fe | Fe2O3 | 33.56 |
| K-6Fe/Zn | Fe2O3 | 28.36 |
| K-3Fe/Zn | Fe2O3 | 25.88 |
| K-1Fe/Zn | Fe2O3 | 24.36 |
| 催化剂 | 氧化铁晶相 | 晶粒尺寸/nm |
|---|---|---|
| K-Fe | Fe2O3 | 33.56 |
| K-6Fe/Zn | Fe2O3 | 28.36 |
| K-3Fe/Zn | Fe2O3 | 25.88 |
| K-1Fe/Zn | Fe2O3 | 24.36 |
| 催化剂 | 比表面积/m2∙g-1 | 孔径/nm | 孔体积/cm3∙g-1 |
|---|---|---|---|
| K-Fe | 30.39 | 11.87 | 0.18 |
| K-6Fe/Zn | 37.72 | 11.48 | 0.21 |
| K-3Fe/Zn | 39.12 | 8.84 | 0.23 |
| K-1Fe/Zn | 44.30 | 6.36 | 0.27 |
| 催化剂 | 比表面积/m2∙g-1 | 孔径/nm | 孔体积/cm3∙g-1 |
|---|---|---|---|
| K-Fe | 30.39 | 11.87 | 0.18 |
| K-6Fe/Zn | 37.72 | 11.48 | 0.21 |
| K-3Fe/Zn | 39.12 | 8.84 | 0.23 |
| K-1Fe/Zn | 44.30 | 6.36 | 0.27 |
| 元素 | 质量分数/% | 原子分数/% |
|---|---|---|
| Fe | 38.74 | 34.86 |
| Zn | 41.38 | 27.76 |
| O | 18.71 | 36.15 |
| K | 1.17 | 1.23 |
| 总量 | 100 | 100 |
| 元素 | 质量分数/% | 原子分数/% |
|---|---|---|
| Fe | 38.74 | 34.86 |
| Zn | 41.38 | 27.76 |
| O | 18.71 | 36.15 |
| K | 1.17 | 1.23 |
| 总量 | 100 | 100 |
| 元素 | 质量分数/% | 原子分数% |
|---|---|---|
C Fe | 39.7 18.3 | 56.0 16.5 |
| Zn | 30.4 | 20.4 |
| O | 11.1 | 5.5 |
| K | 0.5 | 1.6 |
| 总量 | 100 | 100 |
| 元素 | 质量分数/% | 原子分数% |
|---|---|---|
C Fe | 39.7 18.3 | 56.0 16.5 |
| Zn | 30.4 | 20.4 |
| O | 11.1 | 5.5 |
| K | 0.5 | 1.6 |
| 总量 | 100 | 100 |
| 催化剂 | CO2转化率/% | CO选择性% | 烃类选择性/% | 参考文献 | |||
|---|---|---|---|---|---|---|---|
| CH4 | C2~C4p | C2~C4= | C5+ | ||||
| Fe3O4 | 27.0 | 35.9 | 43.2 | 33.9 | 5.7 | 17.2 | [ |
| 5Fe-1Zr-Ce-1K | 28.1 | 10.5 | 46.8 | 22.5 | 25.2 | 5.5 | [ |
| 0.1Mn-Na/Fe | 35.7 | 10.9 | 7.3 | 2.5 | 24.1 | 54.7 | [ |
| K-Fe-Co | 23.8 | 31.4 | 17.0 | 4.0 | 11.5 | 36.1 | [ |
| K-1Fe/Zn | 29.3 | 18.1 | 13.9 | 12.4 | 33.8 | 39.8 | 本研究 |
| 催化剂 | CO2转化率/% | CO选择性% | 烃类选择性/% | 参考文献 | |||
|---|---|---|---|---|---|---|---|
| CH4 | C2~C4p | C2~C4= | C5+ | ||||
| Fe3O4 | 27.0 | 35.9 | 43.2 | 33.9 | 5.7 | 17.2 | [ |
| 5Fe-1Zr-Ce-1K | 28.1 | 10.5 | 46.8 | 22.5 | 25.2 | 5.5 | [ |
| 0.1Mn-Na/Fe | 35.7 | 10.9 | 7.3 | 2.5 | 24.1 | 54.7 | [ |
| K-Fe-Co | 23.8 | 31.4 | 17.0 | 4.0 | 11.5 | 36.1 | [ |
| K-1Fe/Zn | 29.3 | 18.1 | 13.9 | 12.4 | 33.8 | 39.8 | 本研究 |
| 1 | BARRIOS Alan J, PERON Deizi V, CHAKKINGAL Anoop, et al. Efficient promoters and reaction paths in the CO2 hydrogenation to light olefins over zirconia-supported iron catalysts[J]. ACS Catalysis, 2022, 12(5): 3211-3225. |
| 2 | YUAN Fei, ZHANG Guanghui, WANG Mingrui, et al. Boosting the production of light olefins from CO2 hydrogenation over Fe-Co bimetallic catalysts derived from layered double hydroxide[J]. Industrial & Engineering Chemistry Research, 2023, 62(21): 8210-8221. |
| 3 | WANG Shunwu, WU Tijun, LIN Jun, et al. Iron-potassium on single-walled carbon nanotubes as efficient catalyst for CO2 hydrogenation to heavy olefins[J]. ACS Catalysis, 2020, 10(11): 6389-6401. |
| 4 | 姜霞, 李雯, 郭云龙, 等. 生物模板法制备金属氧化物及其催化应用研究进展[J]. 化工进展, 2019, 38(1): 485-494. |
| JIANG Xia, LI Wen, GUO Yunlong, et al. Progress on bio-templated synthesis of metal oxides and their catalytic applications[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 485-494. | |
| 5 | 周红军, 周颖, 徐春明. 中国碳中和目标下CO2转化的思考与实践[J]. 化工进展, 2022, 41(6): 3381-3385. |
| ZHOU Hongjun, ZHOU Ying, XU Chunming. Exploration of the CO2 conversion under China’s carbon neutrality goal[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3381-3385. | |
| 6 | WEBER Daniel, HE Tina, WONG Matthew, et al. Recent advances in the mitigation of the catalyst deactivation of CO2 hydrogenation to light olefins[J]. Catalysts, 2021, 11(12): 1447. |
| 7 | XU Qiangqiang, XU Xingqin, FAN Guoli, et al. Unveiling the roles of Fe-Co interactions over ternary spinel-type ZnCo x Fe2- x O4 catalysts for highly efficient CO2 hydrogenation to produce light olefins[J]. Journal of Catalysis, 2021, 400: 355-366. |
| 8 | 贾晨喜, 邵敬爱, 白小薇, 等. 二氧化碳加氢制甲醇铜基催化剂性能的研究进展[J]. 化工进展, 2020, 39(9): 3658-3668. |
| JIA Chenxi, SHAO Jing’ai, BAI Xiaowei, et al. Review on Cu-based catalysts for CO2 hydrogenation to methanol[J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3658-3668. | |
| 9 | XU Yao, ZHAI Peng, DENG Yuchen, et al. Highly selective olefin production from CO2 hydrogenation on iron catalysts: A subtle synergy between manganese and sodium additives[J]. Angewandte Chemie International Edition, 2020, 59(48): 21736-21744. |
| 10 | KIM Kwang Young, LEE Hojeong, Woo Yeong NOH, et al. Cobalt ferrite nanoparticles to form a catalytic Co-Fe alloy carbide phase for selective CO2 hydrogenation to light olefins[J]. ACS Catalysis, 2020, 10(15): 8660-8671. |
| 11 | WANG Shunwu, JI Yushan, LIU Xuancheng, et al. Potassium as a versatile promoter to tailor the distribution of the olefins in CO2 hydrogenation over iron-based catalyst[J]. ChemCatChem, 2022, 14(6): e202101535. |
| 12 | JIANG Jiandong, WEN Chengyan, TIAN Zhipeng, et al. Manganese-promoted Fe3O4 microsphere for efficient conversion of CO2 to light olefins[J]. Industrial & Engineering Chemistry Research, 2020, 59(5): 2155-2162. |
| 13 | ELISHAV Oren, SHENER Yuval, BEILIN Vadim, et al. Electrospun Fe-Al-O nanobelts for selective CO2 hydrogenation to light olefins[J]. ACS Applied Materials & Interfaces, 2020, 12(22): 24855-24867. |
| 14 | YANG Miao, FAN Dong, WEI Yingxu, et al. Recent progress in methanol-to-olefins (MTO) catalysts[J]. Advanced Materials, 2019, 31(50): 1902181. |
| 15 | BARGER Paul. Methanol to olefins (MTO) and beyond[M]//Zeolites for cleaner technologies. London: Imperial College Press, 2002: 239-260. |
| 16 | TIAN Peng, WEI Yingxu, YE Mao, et al. Methanol to olefins (MTO): From fundamentals to commercialization[J]. ACS Catalysis, 2015, 5(3): 1922-1938. |
| 17 | JIANG Mingyang, LIU Siyi, DENG Huachu, et al. The efficacy and safety of fast track surgery (FTS) in patients after hip fracture surgery: A meta-analysis[J]. Journal of Orthopaedic Surgery and Research, 2021, 16(1): 162. |
| 18 | ZHU Yi fen, XIE Bingqiao, AMAL Rose, et al. Light-enhanced conversion of CO2 to light olefins: Basis in thermal catalysis, current progress, and future prospects[J]. Small Structures, 2023, 4(6): 2200285. |
| 19 | WANG Kai, LIU Na, WEI Jian, et al. Bifunctional CoFe/HZSM-5 catalysts orient CO2 hydrogenation towards liquid hydrocarbons[J]. Chemical Communications, 2023, 59(92): 13767-13770. |
| 20 | HAN Xiao, QING Ming, WANG Hong, et al. Effect of Fe3O4 content on the CO2 selectivity of iron-based catalyst for Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology, 2023, 51(2): 155-164. |
| 21 | CHENG Yang, CHEN Yong, ZHANG Shuxian, et al. High-yield production of aromatics over CuFeO2/hierarchical HZSM-5 via CO2 Fischer-Tropsch synthesis[J]. Green Chemistry, 2023, 25(9): 3570-3584. |
| 22 | LIU Renjie, BERCH John N EL, HOUSE Stephen, et al. Reactive separations of CO/CO2 mixtures over Ru-Co single atom alloys[J]. ACS Catalysis, 2023, 13(4): 2449-2461. |
| 23 | TORRES GALVIS Hirsa M, DE JONG Krijn P. Catalysts for production of lower olefins from synthesis gas: A review[J]. ACS Catalysis, 2013, 3(9): 2130-2149. |
| 24 | HAN Seung Ju, HWANG Sun-Mi, PARK Hae-Gu, et al. Identification of active sites for CO2 hydrogenation in Fe catalysts by first-principles microkinetic modelling[J]. Journal of Materials Chemistry A, 2020, 8(26): 13014-13023. |
| 25 | SHAFER Wilson D, JACOBS Gary, GRAHAM Uschi M, et al. Increased CO2 hydrogenation to liquid products using promoted iron catalysts[J]. Journal of Catalysis, 2019, 369: 239-248. |
| 26 | MALHI Haripal Singh, SUN Chao, ZHANG Zhengzhou, et al. Catalytic consequences of the decoration of sodium and zinc atoms during CO2 hydrogenation to olefins over iron-based catalyst[J]. Catalysis Today, 2022, 387: 28-37. |
| 27 | YANG Qingxin, KONDRATENKO Vita A, PETROV Sergey A, et al. Identifying performance descriptors in CO2 hydrogenation over iron-based catalysts promoted with alkali metals[J]. Angewandte Chemie International Edition, 2022, 61(22): e202116517. |
| 28 | ZHAO Yunxia, MA Jiajun, YIN Juli, et al. Alkali metal promotion on Fe-Co-Ni trimetallic catalysts for CO2 hydrogenation to light olefins[J]. Applied Surface Science, 2024, 657: 159783. |
| 29 | WANG Dong, XIE Zhenhua, POROSOFF Marc D, et al. Recent advances in carbon dioxide hydrogenation to produce olefins and aromatics[J]. Chem, 2021, 7(9): 2277-2311. |
| 30 | CHOI Yo Han, JANG Youn Jeong, PARK Hunmin, et al. Carbon dioxide Fischer-Tropsch synthesis: A new path to carbon-neutral fuels[J]. Applied Catalysis B: Environmental, 2017, 202: 605-610. |
| 31 | ZHANG Zhenzhou, WEI Chongyang, JIA Lingyu, et al. Insights into the regulation of FeNa catalysts modified by Mn promoter and their tuning effect on the hydrogenation of CO2 to light olefins[J]. Journal of Catalysis, 2020, 390: 12-22. |
| 32 | ZHANG Jianli, LU Shipeng, SU Xiaojuan, et al. Selective formation of light olefins from CO2 hydrogenation over Fe-Zn-K catalysts[J]. Journal of CO2 Utilization, 2015, 12: 95-100. |
| 33 | GAO Xinhua, ZHANG Jianli, CHEN Ning, et al. Effects of zinc on Fe-based catalysts during the synthesis of light olefins from the Fischer-Tropsch process[J]. Chinese Journal of Catalysis, 2016, 37(4): 510-516. |
| 34 | ZHANG Chao, XU Minjie, YANG Zixu, et al. Uncovering the electronic effects of zinc on the structure of Fe5C2-ZnO catalysts for CO2 hydrogenation to linear α-olefins[J]. Applied Catalysis B: Environmental, 2021, 295: 120287. |
| 35 | SHINAGAWA Tsutomu, IZAKI Masanobu, INUI Haruyuki, et al. Microstructure and electronic structure of transparent ferromagnetic ZnO-spinel iron oxide composite films[J]. Chemistry of Materials, 2006, 18(3): 763-770. |
| 36 | ZHANG Zhiqiang, HUANG Gongxun, TANG Xinglei, et al. Zn and Na promoted Fe catalysts for sustainable production of high-valued olefins by CO2 hydrogenation[J]. Fuel, 2022, 309: 122105. |
| 37 | XU Yuebing, SHI Chengming, LIU Bing, et al. Selective production of aromatics from CO2 [J]. Catalysis Science & Technology, 2019, 9(3): 593-610. |
| 38 | ZHANG Jianli, SU Xiaojuan, WANG Xu, et al. Promotion effects of Ce added Fe–Zr–K on CO2 hydrogenation to light olefins[J]. Reaction Kinetics, Mechanisms and Catalysis, 2018, 124(2): 575-585. |
| 39 | LIANG Binglian, SUN Ting, MA Junguo, et al. Mn decorated Na/Fe catalysts for CO2 hydrogenation to light olefins[J]. Catalysis Science & Technology, 2019, 9(2): 456-464. |
| 40 | JIANG Feng, LIU Bing, GENG Shunshun, et al. Hydrogenation of CO2 into hydrocarbons: Enhanced catalytic activity over Fe-based Fischer-Tropsch catalysts[J]. Catalysis Science & Technology, 2018, 8(16): 4097-4107. |
| [1] | TAO Jinquan, JIA Yijing, BAI Tianyu, YAO Rongpeng, HUANG Wenbin, CUI Yan, ZHOU Yasong, WEI Qiang. Synthesis and catalytic MTP performance of Silicalite-1 zeolite with low cost [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1550-1558. |
| [2] | WANG Wen, JIN Yang, LI Jun, CHEN Jianjun, CHEN Ming, MENG Xin. Preparation of superhydrophobic PVDF membrane via in-situ FeOOH growth for CO2 absorption [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1570-1577. |
| [3] | CHEN Yuhang, LI Qiaoyan, LIANG Meisheng, SONG Tianyuan, WANG Yue, LI Simeng, ZHOU Yuxuan. Role of the Sn dopant on Cu/CeZrO2/γ-Al2O3 three-way catalyst: Enhancement of low-temperature activity and sulfur resistance [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1368-1377. |
| [4] | ZHANG Xin’er, PEI Liujun, ZHOU Yudie, JIN Kaili, WANG Jiping. Progress of TiO2-based photocatalysts for hydrogen production by water splitting with solar energy [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1298-1308. |
| [5] | LIU Junjie, WU Jianmin, SUN Qiwen, WANG Jiancheng, SUN Yan. Research of metallocene catalysts for linear α-olefins polymerization to obtain high molecular weight products [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1309-1322. |
| [6] | ZHU Guoyu, GE Qi, FU Mingli. Durability testing and life prediction of methanol reforming catalysts for hydrogen production [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1338-1346. |
| [7] | XIE Xinyao, WAN Fen, FU Xuanyu, FAN Yuting, CHEN Lingxiu, LI Peng. Catalytic performance and mechanism of CO2 electroreduction of Cu-Ag nanoclusters [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1387-1395. |
| [8] | ZUO Ji, LUO Li, XIE Yongkai, CHEN Wenyao, QIAN Gang, ZHOU Xinggui, DUAN Xuezhi. Effect of Cu catalyst particle size on methanol nonoxidative dehydrogenation to formaldehyde [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1347-1354. |
| [9] | BI Wentao, WANG Xuelin, QU Wei, WANG Congxin, TIAN Zhijian. Effect of Mg-modification on the catalytic performance of Pt/ZSM-22 with low Pt content in n-alkane hydroisomerization [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1355-1367. |
| [10] | ZHANG Maorun, SUN Weiru, MA Tianlin, XIN Zhiling. Anti-SO2 poisoning performance of Mo-modified MnCe/SiC in low-temperature SCR denitrification [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1378-1386. |
| [11] | ZHANG Qi, WANG Tao, ZHANG Xuebing, LI Weizhen, CHENG Meng, ZHANG Kui, LYU Yijun, MEN Zhuowu. Advances in Fe-based catalysts for conversion of syngas/CO2 to higher alcohols [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1323-1337. |
| [12] | SU Liangjian, XIAO Junyan, ZHANG Chunguang, ZHAO Yuansheng, YANG Xu. Deep regeneration of fixed-bed HDCCR catalyst [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 728-734. |
| [13] | ZHANG Qi, WANG Tao, ZHANG Xuebing, LI Weizhen, FENG Bo, JIANG Zhihui, LYU Yijun, MEN Zhuowu. Advances in Co-based catalysts for syngas to higher alcohol [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 773-787. |
| [14] | JIA Yijing, TAO Jinquan, HUANG Wenbin, LIU Haoran, LI Rongrong, YAO Rongpeng, BAI Tianyu, WEI Qiang, ZHOU Yasong. Research progress on iron-based catalysts for CO2 hydrogenation to low carbon olefins [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 820-833. |
| [15] | LIAO Xu, WANG Wei, HUANG Wenting, XIONG Wentao, WANG Zeyu, QIN Zuodong, LIN Jinqing. Research progress in biomass-based catalysts in the conversion of carbon dioxide into cyclic carbonates [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 834-846. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |