Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (5): 2786-2802.DOI: 10.16085/j.issn.1000-6613.2023-1584
• Carbon dioxide capture and utilization • Previous Articles
LU Xinxin(), CAI Dongren, ZHAN Guowu()
Received:
2023-09-07
Revised:
2023-12-22
Online:
2024-06-15
Published:
2024-05-15
Contact:
ZHAN Guowu
通讯作者:
詹国武
作者简介:
卢欣欣(1998—),女,硕士研究生,研究方向为集成催化剂。E-mail:lxx_18960186016@163.com。
基金资助:
CLC Number:
LU Xinxin, CAI Dongren, ZHAN Guowu. Research progress in the construction of integrated catalysts based on solid precursors and their application in CO2 hydrogenation[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2786-2802.
卢欣欣, 蔡东仁, 詹国武. 基于固体前体构建集成催化剂及CO2加氢研究进展[J]. 化工进展, 2024, 43(5): 2786-2802.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1584
1 | International Energy Agency. CO2 emissions in 2023[EB/OL]. , 2024. |
2 | TOLLEFSON Jeff, WEISS Kenneth R. Nations approve historic global climate accord[J]. Nature, 2015, 528(7582): 315-316. |
3 | 张凡, 王树众, 李艳辉, 等. 中国制造业碳排放问题分析与减排对策建议[J]. 化工进展, 2022, 41(3): 1645-1653. |
ZHANG Fan, WANG Shuzhong, LI Yanhui, et al. Analysis of CO2 emission and countermeasures and suggestions for emission reduction in Chinese manufacturing[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1645-1653. | |
4 | HEPBURN Cameron, ADLEN Ella, BEDDINGTON John, et al. The technological and economic prospects for CO2 utilization and removal[J]. Nature, 2019, 575(7781): 87-97. |
5 | 张育新, 王灿, 舒文祥. 二氧化碳的还原及其利用研究进展[J]. 化工进展, 2023, 42(2): 944-956. |
ZHANG Yuxin, WANG Can, SHU Wenxiang. Research progress of carbon dioxide reduction and utilization[J]. Chemical Industry and Engineering Progress, 2023, 42(2): 944-956. | |
6 | JIANG Xiao, NIE Xiaowa, GUO Xinwen, et al. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis[J]. Chemical Reviews, 2020, 120(15): 7984-8034. |
7 | 成康, 张庆红, 康金灿, 等. 二氧化碳直接制备高值化学品中的接力催化方法[J]. 中国科学: 化学, 2020, 50(7): 743-755. |
CHENG Kang, ZHANG Qinghong, KANG Jincan, et al. Relay catalysis in the direct conversion of carbon dioxide to high-value chemicals[J]. Scientia Sinica Chimica, 2020, 50(7): 743-755. | |
8 | WANG Wei, WANG Shengping, MA Xinbin, et al. Recent advances in catalytic hydrogenation of carbon dioxide[J]. Chemical Society Reviews, 2011, 40(7): 3703-3727. |
9 | 徐海成, 戈亮. 二氧化碳加氢逆水汽变换反应的研究进展[J]. 化工进展, 2016, 35(10): 3180-3189. |
XU Haicheng, GE Liang. Progress on the catalytic hydrogenation of CO2 via reverse water gas shift reaction[J]. Chemical Industry and Engineering Progress, 2016, 35(10): 3180-3189. | |
10 | POROSOFF Marc D, YAN Binhang, CHEN Jingguang G. Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: Challenges and opportunities[J]. Energy & Environmental Science, 2016, 9(1): 62-73. |
11 | CHEN Linxiao, KOVARIK Libor, János SZANYI. Temperature-dependent communication between Pt/Al2O3 catalysts and anatase TiO2 dilutant: The effects of metal migration and carbon transfer on the reverse water-gas shift reaction[J]. ACS Catalysis, 2021, 11(19): 12058-12067. |
12 | 刘昌俊, 郭秋婷, 叶静云, 等. 二氧化碳转化催化剂研究进展及相关问题思考[J]. 化工学报, 2016, 67(1): 6-13. |
LIU Changjun, GUO Qiuting, YE Jingyun, et al. Perspective on catalyst investigation for CO2 conversion and related issues[J]. CIESC Journal, 2016, 67(1): 6-13. | |
13 | 贾晨喜, 邵敬爱, 白小薇, 等. 二氧化碳加氢制甲醇铜基催化剂性能的研究进展[J]. 化工进展, 2020, 39(9): 3658-3668. |
JIA Chenxi, SHAO Jingai, BAI Xiaowei, et al. Review on Cu-based catalysts for CO2 hydrogenation to methanol[J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3658-3668. | |
14 | 蔡中杰, 田盼, 黄忠亮, 等. 基于生物模板制备二氧化碳加氢反应的Cu/ZnO催化剂[J]. 化工学报, 2021, 72(7): 3668-3679. |
CAI Zhongjie, TIAN Pan, HUANG Zhongliang, et al. Preparation of Cu/ZnO nanocatalysts based on bio-templates for CO2 hydrogenation[J]. CIESC Journal, 2021, 72(7): 3668-3679. | |
15 | 李雯, 詹国武, 黄加乐, 等. 基于金属有机骨架和稻谷壳前体构筑ZnZrO x &bio-SAPO-34双功能催化剂及CO2加氢制低碳烯烃[J]. 化工进展, 2022, 41(3): 1298-1308. |
LI Wen, ZHAN Guowu, HUANG Jiale, et al. Synthesis of ZnZrO x &bio-SAPO-34 bifunctional catalysts derived from metal organic frameworks and rice husk template for CO2 hydrogenation to light olefins[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1298-1308. | |
16 | WANG Yuhao, KATTEL Shyam, GAO Wengui, et al. Exploring the ternary interactions in Cu-ZnO-ZrO2 catalysts for efficient CO2 hydrogenation to methanol[J]. Nature Communications, 2019, 10: 1166. |
17 | ZHANG Xiao, LI Xueqian, ZHANG Du, et al. Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation[J]. Nature Communications, 2017, 8: 14542. |
18 | ZHANG Yaping, XU Jixiang, ZHOU Jie, et al. Metal-organic framework-derived multifunctional photocatalysts[J]. Chinese Journal of Catalysis, 2022, 43(4): 971-1000. |
19 | KONNERTH Hannelore, MATSAGAR Babasaheb M, CHEN Season S, et al. Metal-organic framework (MOF)-derived catalysts for fine chemical production[J]. Coordination Chemistry Reviews, 2020, 416: 213319. |
20 | YANG Liu, ZENG Xiaofei, WANG Wenchuan, et al. Recent progress in MOF-derived, heteroatom-doped porous carbons as highly efficient electrocatalysts for oxygen reduction reaction in fuel cells[J]. Advanced Functional Materials, 2018, 28(7): 1704537. |
21 | LIU Da, GU Wenyi, ZHOU Liang, et al. Recent advances in MOF-derived carbon-based nanomaterials for environmental applications in adsorption and catalytic degradation[J]. Chemical Engineering Journal, 2022, 427: 131503. |
22 | LIU Sihan, SONG Miaomiao, Xingwen CHA, et al. Nickel phyllosilicates functionalized with graphene oxide to boost CO selectivity in CO2 hydrogenation[J]. Separation and Purification Technology, 2022, 287: 120555. |
23 | ZHAO Feigang, ZHAN Guowu, ZHOU Shufeng. Intercalation of laminar Cu-Al LDHs with molecular TCPP(M) (M = Zn, Co, Ni, and Fe) towards high-performance CO2 hydrogenation catalysts[J]. Nanoscale, 2020, 12(24): 13145-13156. |
24 | YU Jiahui, FENG Bingge, LIU Shuai, et al. Highly active Ni/Al2O3 catalyst for CO2 methanation by the decomposition of Ni-MOF@Al2O3 precursor via cold plasma[J]. Applied Energy, 2022, 315: 119036. |
25 | SHENG Yuan, ZENG Huachun. Monodisperse aluminosilicate spheres with tunable Al/Si ratio and hierarchical macro-meso-microporous structure[J]. ACS Applied Materials & Interfaces, 2015, 7(24): 13578-13589. |
26 | WANG Meiling, QIAN Xiaoqi, XIE Liqiang, et al. Synthesis of a Ni phyllosilicate with controlled morphology for deep hydrogenation of polycyclic aromatic hydrocarbons[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(2): 1989-1997. |
27 | SONG Miaomiao, HUANG Zhongliang, CHEN Bin, et al. Reduction treatment of nickel phyllosilicate supported Pt nanocatalysts determining product selectivity in CO2 hydrogenation[J]. Journal of CO2 Utilization, 2021, 52: 101674. |
28 | VAN DEN BERG Roy, ELKJAER Christian F, GOMMES Cedric J, et al. Revealing the formation of copper nanoparticles from a homogeneous solid precursor by electron microscopy[J]. Journal of the American Chemical Society, 2016, 138(10): 3433-3442. |
29 | SIVAIAH M V, PETIT S, BEAUFORT M F, et al. Nickel based catalysts derived from hydrothermally synthesized 1∶1 and 2∶1 phyllosilicates as precursors for carbon dioxide reforming of methane[J]. Microporous and Mesoporous Materials, 2011, 140(1/2/3): 69-80. |
30 | LIU Hua, CHAI Mengqian, PEI Guangxian, et al. Effect of IB-metal on Ni/SiO2 catalyst for selective hydrogenation of acetylene[J]. Chinese Journal of Catalysis, 2020, 41(7): 1099-1108. |
31 | WEN Xueying, XU Leilei, CHEN Mindong, et al. Exploring the influence of nickel precursors on constructing efficient Ni-based CO2 methanation catalysts assisted with in-situ technologies[J]. Applied Catalysis B: Environmental, 2021, 297: 120486. |
32 | YANG Meihua, JIN Peng, FAN Yinrui, et al. Ammonia-assisted synthesis towards a phyllosilicate-derived highly-dispersed and long-lived Ni/SiO2 catalyst[J]. Catalysis Science & Technology, 2015, 5(12): 5095-5099. |
33 | ZHAO Yujun, LI Siming, WANG Yue, et al. Efficient tuning of surface copper species of Cu/SiO2 catalyst for hydrogenation of dimethyl oxalate to ethylene glycol[J]. Chemical Engineering Journal, 2017, 313: 759-768. |
34 | LI Fengjiao, WANG Liguo, HAN Xiao, et al. Selective hydrogenation of ethylene carbonate to methanol and ethylene glycol over Cu/SiO2 catalysts prepared by ammonia evaporation method[J]. International Journal of Hydrogen Energy, 2017, 42(4): 2144-2156. |
35 | CHEN Liangfeng, GUO Pingjun, QIAO Minghua, et al. Cu/SiO2 catalysts prepared by the ammonia-evaporation method: Texture, structure, and catalytic performance in hydrogenation of dimethyl oxalate to ethylene glycol[J]. Journal of Catalysis, 2008, 257(1): 172-180. |
36 | CHE Michel, CHENG Zheng xing, LOUIS Catherine. Nucleation and particle growth processes involved in the preparation of silica-supported nickel materials by a two-step procedure[J]. Journal of the American Chemical Society, 1995, 117: 2008-2018. |
37 | BURATTIN Paolo, CHE Michel, LOUIS Catherine. Molecular approach to the mechanism of deposition-precipitation of the Ni(Ⅱ) phase on silica[J]. Journal of Physical Chemistry B, 1998, 102: 2722-2732. |
38 | BURATTIN Paolo, CHE Michel, LOUIS Catherine. Metal particle size in Ni/SiO2 materials prepared by deposition- precipitation: Influence of the nature of the Ni(Ⅱ) phase and of its interaction with the support[J]. Journal of Physical Chemistry B, 1999, 103: 6171-6178. |
39 | BURATTIN Paolo, CHE Michel, LOUIS Catherine. Characterization of the Ni(Ⅱ) phase formed on silica upon deposition- precipitation[J]. Journal of Physical Chemistry B, 1997, 101: 7060-7074. |
40 | BURATTIN Paolo, CHE Michel, LOUIS Catherine. Ni/SiO2 materials prepared by deposition-precipitation: Influence of the reduction conditions and mechanism of formation of metal particles[J]. Journal of Physical Chemistry B, 2020, 104(45): 10482-10489. |
41 | VAN DER GRIFT C J G, ELBERSE P A, MULDER A, et al. Preparation of silica-supported copper catalysts by means of deposition-precipitation[J]. Applied Catalysis, 1990, 59: 275-289. |
42 | BIAN Zhoufeng, KAWI Sibudjing. Preparation, characterization and catalytic application of phyllosilicate: A review[J]. Catalysis Today, 2020, 339: 3-23. |
43 | SIVAIAH M V, PETIT S, BARRAULT J, et al. CO2 reforming of CH4 over Ni-containing phyllosilicates as catalyst precursors[J]. Catalysis Today, 2010, 157(1/2/3/4): 397-403. |
44 | 李静, 靳博晗, 岳海荣, 等. 氨铜比对蒸氨法Cu/SiO2催化剂活性组分演变及二氧化碳加氢性能的影响[J]. 应用化工 2016, 45(11): 2005-2012. |
LI Jing, JIN Bohan, YUE Hairong, et al. Effect of ammonia copper ratio on the structural evolution and catalytic activity of Cu/SiO2 catalysts prepared by ammonia evaporation method in CO2 hydrogenation reaction[J]. Applied Chemical Industry, 2016, 45(11): 2005-2012. | |
45 | WANG Zhiqiang, XU Zhongning, PENG Siyan, et al. High-performance and long-lived Cu/SiO2 nanocatalyst for CO2 hydrogenation[J]. ACS Catalysis, 2015, 5(7): 4255-4259. |
46 | YE Runping, GONG Weibo, SUN Zhao, et al. Enhanced stability of Ni/SiO2 catalyst for CO2 methanation: Derived from nickel phyllosilicate with strong metal-support interactions[J]. Energy, 2019, 188: 116059. |
47 | Juhwan IM, SHIN Hyeyoung, JANG Haeyoun, et al. Maximizing the catalytic function of hydrogen spillover in platinum-encapsulated aluminosilicates with controlled nanostructures[J]. Nature Communications, 2014, 5: 3370. |
48 | ZUO Jiachang, CHEN Kun, ZHENG Jianwei, et al. Enhanced CO2 hydrogenation to methanol over La oxide-modified Cu nanoparticles socketed on Cu phyllosilicate nanotubes[J]. Journal of CO2 Utilization, 2021, 52: 101699. |
49 | 吕翰林, 胡兵, 刘国亮, 等. ZnO逆修饰小尺寸Cu/SiO2催化剂及其在CO2加氢制甲醇中的应用[J]. 物理化学学报, 2020, 36(11): 1911008. |
Hanlin LYU, HU Bing, LIU Guoliang, et al. Inverse decoration of ZnO on small-sized Cu/SiO2 with controllable Cu-ZnO interaction for CO2 hydrogenation to produce methanol[J]. Acta Physico-Chimica Sinica, 2020, 36(11): 1911008. | |
50 | ZHANG Tengfei, LIU Qing. Lanthanum-modified MCF-derived nickel phyllosilicate catalyst for enhanced CO2 methanation: A comprehensive study[J]. ACS Applied Materials & Interfaces, 2020, 12(17): 19587-19600. |
51 | ZHANG Yang, DUAN Hongchang, Zhaoyang LYU, et al. Which is the better catalyst for CO2 methanation-nanotubular or supported Ni phyllosilicate?[J]. International Journal of Hydrogen Energy, 2021, 46(80): 39903-39911. |
52 | LIU J, ZHANG Y, CHEN Y, et al. Controllable synthesis of yolk-shell nickel phyllosilicate for CO2 methanation: Identifying effect of pore structure of silica sacrificial template[J]. Materials Today Nano, 2022, 18: 100208. |
53 | NGUYEN H T, NGUYEN A T Q, TRANG T T VU, et al. Potassium in silicon-rich biomass wastes: A perspective of slow-release potassium sources[J]. Biofuels, Bioproducts and Biorefining, 2022, 16(5): 1159-1164. |
54 | CHEN Yaqi, LIU Qing. Synthesis and regeneration of Ni-phyllosilicate catalysts using a versatile double accelerator method: A comprehensive study[J]. ACS Catalysis, 2021, 11(20): 12570-12584. |
55 | ZHANG Shouwei, GAO Huihui, LI Jiaxing, et al. Rice husks as a sustainable silica source for hierarchical flower-like metal silicate architectures assembled into ultrathin nanosheets for adsorption and catalysis[J]. Journal of Hazardous Materials, 2017, 321: 92-102. |
56 | 宋苗苗, 郭梅婷, 蔡东仁, 等. 基于稻谷壳模板制备层状硅酸盐催化剂用于CO2加氢反应[J]. 化学反应工程与工艺, 2022, 38(4): 318-347. |
SONG Miaomiao, GUO Meiting, CAI Dongren, et al. Preparation of phyllosilicate catalysts using rice husk as template for CO2 hydrogenation[J]. Chemical Reaction Engineering and Technology, 2022, 38(4): 318-347. | |
57 | YANG Zhongzhu, WEI Jingjing, ZENG Guangming, et al. A review on strategies to LDH-based materials to improve adsorption capacity and photoreduction efficiency for CO2 [J]. Coordination Chemistry Reviews, 2019(386): 154-182. |
58 | 张栋强, 王园园, 贾倩, 等. 层状双氢氧化物的制备及其摩擦学性能研究进展[J]. 中国表面工程, 2022, 35(2): 91-101. |
ZHANG Dongqiang, WANG Yuanyuan, JIA Qian, et al. Review on preparation and tribological properties of layered double hydroxides[J]. China Surface Engineering, 2022, 35(2): 91-101. | |
59 | 谢博尧, 张纪梅, 郝帅帅, 等. 层状双氢氧化物析氧催化剂的研究进展[J]. 材料工程, 2020, 48(1): 1-9. |
XIE Boyao, ZHANG Jimei, HAO Shuaishuai, et al. Research progress in layered double hydroxides catalysts for oxygen evolution reaction[J]. Journal of Materials Engineering, 2020, 48(1): 1-9. | |
60 | ZHANG Luhong, XIONG Zhigang, LI Li, et al. Uptake and degradation of orange Ⅱ by zinc aluminum layered double oxides[J]. Journal of Colloid and Interface Science, 2016, 469: 224-230. |
61 | FANG Xin, CHEN Chuang, JIA He, et al. Progress in adsorption enhanced hydrogenation of CO2 on layered double hydroxide (LDH) derived catalysts[J]. Journal of Industrial and Engineering Chemistry, 2021, 95: 16-27. |
62 | CAVANI F, TRIFIRÒ F, VACCARI A. Hydrotalcite-type anionic clays: Preparation, properties and applications[J]. Catalysis Today, 1991, 11: 173-301. |
63 | JIN Li, ZHOU Xiaoyuan, WANG Fang, et al. Insights into memory effect mechanisms of layered double hydroxides with solid-state NMR spectroscopy[J]. Nature Communications, 2022, 13(1): 6093. |
64 | TEIXEIRA Mariana A, MAGESTE Aparecida B, DIAS Anderson, et al. Layered double hydroxides for remediation of industrial wastewater containing manganese and fluoride[J]. Journal of Cleaner Production, 2018, 171: 275-284. |
65 | MIYATA Shigeo. Physico-chemical properties of synthetic hydrotalcites in relation to composition[J]. Clays and Clay Minerals, 1980, 28(1): 50-56. |
66 | WANG Qiang, Hui huang TAY, JIA WEI NG Desmond, et al. The effect of trivalent cations on the performance of Mg-M-CO3 layered double hydroxides for high-temperature CO2 capture[J]. ChemSusChem, 2010, 3(8): 965-973. |
67 | HE Lei, HUANG Yanqiang, WANG Aiqin, et al. A noble-metal-free catalyst derived from Ni-Al hydrotalcite for hydrogen generation from N2H4·H2O decomposition[J]. Angewandte Chemie-International Edition, 2012, 51(25): 6191-6195. |
68 | HE Lei, LIN Qingquan, LIU Yu, et al. Unique catalysis of Ni-Al hydrotalcite derived catalyst in CO2 methanation: Cooperative effect between Ni nanoparticles and a basic support[J]. Journal of Energy Chemistry, 2014, 23(5): 587-592. |
69 | Yuhan MEN, FANG Xin, GU Qinfen, et al. Synthesis of Ni5Ga3 catalyst by hydrotalcite-like compound (HTlc) precursors for CO2 hydrogenation to methanol[J]. Applied Catalysis B: Environmental, 2020, 275: 119067. |
70 | LIU Zhihao, GAO Xinhua, LIU Bo, et al. Highly stable and selective layered Co-Al-O catalysts for low-temperature CO2 methanation[J]. Applied Catalysis B: Environmental, 2022, 310: 121303. |
71 | LAN HUYNH Huong, MEKONNEN TUCHO Wakshum, YU Zhixin. Structured NiFe catalysts derived from in-situ grown layered double hydroxides on ceramic monolith for CO2 methanation[J]. Green Energy & Environment, 2020, 5(4): 423-432. |
72 | HANIF Aamir, DASGUPTA Soumen, DIVEKAR Swapnil, et al. A study on high temperature CO2 capture by improved hydrotalcite sorbents[J]. Chemical Engineering Journal, 2014, 236: 91-99. |
73 | HANIF Aamir, SUN Mingzhe, SHANG Shanshan, et al. Exfoliated Ni-Al LDH 2D nanosheets for intermediate temperature CO2 capture[J]. Journal of Hazardous Materials, 2019, 374: 365-371. |
74 | MIGUEL C V, SORIA M A, MENDES A, et al. A sorptive reactor for CO2 capture and conversion to renewable methane[J]. Chemical Engineering Journal, 2017, 322: 590-602. |
75 | FANG Xin, Yuhan MEN, WU Fan, et al. Promoting CO2 hydrogenation to methanol by incorporating adsorbents into catalysts: Effects of hydrotalcite[J]. Chemical Engineering Journal, 2019, 378: 122052. |
76 | ZHANG Ruihong, AI Yuejie, LU Zhanhui. Application of multifunctional layered double hydroxides for removing environmental pollutants: Recent experimental and theoretical progress[J]. Journal of Environmental Chemical Engineering, 2020, 8(4): 103908. |
77 | HE Feng, ZHUANG Jiahao, LU Bin, et al. Ni-based catalysts derived from Ni-Zr-Al ternary hydrotalcites show outstanding catalytic properties for low-temperature CO2 methanation[J]. Applied Catalysis B: Environmental, 2021, 293: 120218. |
78 | ZHAO Feigang, FAN Longlong, XU Kaiji, et al. Hierarchical sheet-like Cu/Zn/Al nanocatalysts derived from LDH/MOF composites for CO2 hydrogenation to methanol[J]. Journal of CO2 Utilization, 2019, 33: 222-232. |
79 | LI Molly M J, CHEN Chunping, AYVALI Tuğçe, et al. CO2 hydrogenation to methanol over catalysts derived from single cationic layer CuZnGa LDH precursors[J]. ACS Catalysis, 2018, 8(5): 4390-4401. |
80 | OREGE Joshua Iseoluwa, KIFLE Ghebretensae Aron, YU Yang, et al. Emerging spinel ferrite catalysts for driving CO2 hydrogenation to high-value chemicals[J]. Matter, 2023, 6(5): 1404-34. |
81 | JOUTSUKA Tatsuya, HAMAMURA Ryu, FUJIWARA Kakeru, et al. Understanding the structure of Cu-doped MgAl2O4 for CO2 hydrogenation catalyst precursor using experimental and computational approaches[J]. International Journal of Hydrogen Energy, 2022, 47(50): 21369-21374. |
82 | LIU Tangkang, XU Di, WU Dengdeng, et al. Spinel ZnFe2O4 regulates copper sites for CO2 hydrogenation to methanol[J]. ACS Sustainable Chemistry Engineering, 2021, 9(11): 4033-41. |
83 | Yonggyun BAE, HONG Jongsup. Enhancement of surface morphology and catalytic kinetics of NiAl2O4 spinel-derived Ni catalyst to promote dry reforming of methane at low temperature for the direct application to a solid oxide fuel cell[J]. Chemical Engineering Journal, 2022, 446: 136978. |
84 | WANG Lingxiang, WANG Liang, ZHANG Jian, et al. Selective hydrogenation of CO2 to ethanol over cobalt catalysts[J]. Angewandte Chemie International Edition, 2018, 57(21): 6104-6108. |
85 | AN Kang, ZHANG Siran, WANG Hong, et al. Co0-Co δ + active pairs tailored by Ga-Al-O spinel for CO2-to-ethanol synthesis[J]. Chemical Engineering Journal, 2022, 433: 134606. |
86 | KHAN Nazmul Abedin, HASAN Zubair, JHUNG Sung Hwa. Beyond pristine metal-organic frameworks: Preparation and application of nanostructured, nanosized, and analogous MOFs[J]. Coordination Chemistry Reviews, 2018, 376: 20-45. |
87 | QIAN Yongteng, ZHANG Fangfang, PANG Huan. A review of MOFs and their composites based photocatalysts: Synthesis and applications[J]. Advanced Functional Materials, 2021, 31(37): 2104231. |
88 | WANG Kecheng, LI Yaping, XIE Linhua, et al. Construction and application of base stable MOFs: A critical review[J]. Chemical Society Reviews, 2022, 51(15): 6417-6441. |
89 | KHALIL Islam E, FONSECA Javier, REITHOFER Michael R, et al. Tackling orientation of metal-organic frameworks (MOFs): The quest to enhance MOF performance[J]. Coordination Chemistry Reviews, 2023, 481: 215043. |
90 | REN Jianwei, DYOSIBA Xoliswa, MUSYOKA Nicholas M, et al. Review on the current practices and efforts towards pilot-scale production of metal-organic frameworks (MOFs)[J]. Coordination Chemistry Reviews, 2017, 352: 187-219. |
91 | 周程, 南永永, 查飞, 等. 金属有机骨架材料在二氧化碳加氢中的应用[J]. 燃料化学学报, 2021, 49(10): 1444-1457. |
ZHOU Chen, Yongyong NAN, ZHA Fei, et al. Application of metal-organic frameworks in CO2 hydrogenation[J]. Journal of Fuel Chemistry and Technology, 2021, 49(10): 1444-1457. | |
92 | CHEN Bin, ZENG Xiaoli, LIU Yiping, et al. Thermal decomposition kinetics of M-BTC (M = Cu, Co, Zn, and Ce) and M-BTC/Pt composites under oxidative and reductive environments[J]. Chemical Engineering Journal, 2022, 450: 138470. |
93 | ZHANG Jingzheng, AN Bing, HONG Yahui, et al. Pyrolysis of metal-organic frameworks to hierarchical porous Cu/Zn-nanoparticle@carbon materials for efficient CO2 hydrogenation[J]. Materials Chemistry Frontiers, 2017, 1(11): 2405-2409. |
94 | WEI Xijun, LI Yanhong, PENG Huarong, et al. A novel functional material of Co3O4/Fe2O3 nanocubes derived from a MOF precursor for high-performance electrochemical energy storage and conversion application[J]. Chemical Engineering Journal, 2019, 355: 336-340. |
95 | WANG Sha, GAO Zhimin, SONG Guoshuai, et al. Copper oxide hierarchical morphology derived from MOF precursors for enhancing ethanol vapor sensing performance[J]. Journal of Materials Chemistry C, 2020, 8(28): 9671-9677. |
96 | HU Yating, SONG Chi, LI Changjian, et al. Two-step pyrolysis of Mn MIL-100 MOF into MnO nanoclusters/carbon and the effect of N-doping[J]. Journal of Materials Chemistry A, 2022, 10(15): 8172-8177. |
97 | CHEN Xi, CHEN Xi, YU Enqi, et al. In situ pyrolysis of Ce-MOF to prepare CeO2 catalyst with obviously improved catalytic performance for toluene combustion[J]. Chemical Engineering Journal, 2018, 344: 469-479. |
98 | CHEN Xi, CHEN Xi, CAI Songcai, et al. Catalytic combustion of toluene over mesoporous Cr2O3-supported platinum catalysts prepared by in situ pyrolysis of MOFs[J]. Chemical Engineering Journal, 2018, 334: 768-779. |
99 | ZHAN Guowu, ZENG Huachun. Synthesis and functionalization of oriented metal-organic-framework nanosheets: Toward a series of 2D catalysts[J]. Advanced Functional Materials, 2016, 26(19): 3268-3281. |
100 | LIPPI R, HOWARD S C, BARRON H, et al. Highly active catalyst for CO2 methanation derived from a metal organic framework template[J]. Journal of Materials Chemistry A, 2017, 5(25): 12990-12997. |
101 | ZHAN Guowu, ZENG Huachun. ZIF-67 derived nanoreactors for controlling product selectivity in CO2 hydrogenation[J]. ACS Catalysis, 2017, 7(11): 7509-7519. |
102 | HUANG Zhongliang, FAN Longling, ZHAO Feigang, et al. Rational engineering of multilayered Co3O4/ZnO nanocatalysts through chemical transformations from matryoshka-type ZIFs[J]. Advanced Functional Materials, 2019, 29(42): 1903774. |
103 | YUE Yihua, HUANG Zhongliang, CAI Dongren, et al. Fabrication of multi-layered Co3O4/ZnO nanocatalysts for spectroscopic visualization: Effect of spatial positions on CO2 hydrogenation performance[J]. Fuel, 2022, 321: 124042. |
104 | CUI Wengang, ZHANG Qiang, ZHOU Lei, et al. Hybrid MOF template-directed construction of hollow-structured In2O3@ZrO2 heterostructure for enhancing hydrogenation of CO2 to methanol[J]. Small, 2023, 19(1): 2204914. |
105 | CAI Zhongjie, DAI Jiajun, LI Wen, et al. Pd supported on MIL-68(In) derived In2O3 nanotubes as superior catalysts to boost CO2 hydrogenation to methanol[J]. ACS Catalysis, 2020, 10(22): 13275-13289. |
106 | GUTTEROD Emil S, LAZZARINI Andrea, FJERMESTAD Torstein, et al. Hydrogenation of CO2 to methanol by Pt nanoparticles encapsulated in UiO-67: Deciphering the role of the metal organic framework[J]. Journal of the American Chemical Society, 2020, 142(2): 999-1009. |
107 | LI Wen, WANG Kuncan, HUANG Jiale, et al. M x O y -ZrO2 (M = Zn, Co, Cu) solid solutions derived from schiff base-bridged UiO-66 composites as high-performance catalysts for CO2 hydrogenation[J]. ACS Applied Materials & Interfaces, 2019, 11(36): 33263-33272. |
108 | CAI Zhongjie, HUANG Meng, DAI Jiajun, et al. Fabrication of Pd/In2O3 nanocatalysts derived from MIL-68(In) loaded with molecular metalloporphyrin (TCPP(Pd)) toward CO2 hydrogenation to methanol[J]. ACS Catalysis, 2021, 12(1): 709-723. |
109 | KIM Jin Hyun, LEE Jae Sung. Elaborately modified BiVO4 photoanodes for solar water splitting[J]. Advanced Materials, 2019, 31(20): 1806938. |
110 | LU Xinxin, XIAO Jingran, PENG Lingling, et al. Enhancement in the photoelectrochemical performance of BiVO4 photoanode with high (040) facet exposure[J]. Journal of Colloid and Interface Science, 2022, 628: 726-735. |
111 | PARK Yiseul, MCDONALD Kenneth J, CHOI Kyoung Shin. Progress in bismuth vanadate photoanodes for use in solar water oxidation[J]. Chemical Society Reviews, 2013, 42(6): 2321-2337. |
112 | GAO Shan, GU Bingchuan, JIAO Xingchen, et al. Highly efficient and exceptionally durable CO2 photoreduction to methanol over freestanding defective single unit cell bismuth vanadate layers[J]. Journal of the American Chemical Society, 2017, 139(9): 3438-3445. |
113 | ZHAO Lina, BIAN Ji, ZHANG Xianfa, et al. Construction of ultrathin S-scheme heterojunctions of single Ni atom immobilized Ti-MOF and BiVO4 for CO2 photoconversion of nearly 100% to CO by pure water[J]. Advanced Materials, 2022, 34(41): 2205303. |
114 | BRITO Juliana F de, CORRADINI Patricia G, ZANONI Maria Valnice B, et al. The influence of metallic Bi in BiVO4 semiconductor for artificial photosynthesis[J]. Journal of Alloys and Compounds, 2021, 851: 156912. |
115 | LIU Lixia, FU Jiaju, JIANG Liping, et al. Highly efficient photoelectrochemical reduction of CO2 at low applied voltage using 3D Co-Pi/BiVO4/SnO2 nanosheet array photoanodes[J]. ACS Applied Materials & Interfaces, 2019, 11(29): 26024-26031. |
116 | KIM Chang Woo, KANG Myung Jong, JI Sohyun, et al. Artificial photosynthesis for formaldehyde production with 85% of faradaic efficiency by tuning the reduction potential[J]. ACS Catalysis, 2018, 8(2): 968-974. |
117 | MA Wenxiu, BU Jun, LIU Zhenpeng, et al. Monoclinic scheelite bismuth vanadate derived bismuthene nanosheets with rapid kinetics for electrochemically reducing carbon dioxide to formate [J]. Advanced Functional Materials, 2020, 31(4): 2006704. |
118 | JING Qifeng, FENG Xinyan, PAN Jiangling, et al. Facile synthesis of Bi/BiVO4 composite ellipsoids with high photocatalytic activity[J]. Dalton Transactions, 2018, 47(8): 2602-2609. |
119 | XU Xiaofeng, KOU Shufang, GUO Xia, et al. The enhanced photocatalytic properties for water oxidation over Bi/BiVO4/V2O5 Composite[J]. The Journal of Physical Chemistry C, 2017, 121(30): 16257-16265. |
120 | Bartose TRAWIŃSKI, BOCHENTYN Beata, KUSZ Boguslaw. A study of a reduction of a micro- and nanometric bismuth oxide in hydrogen atmosphere[J]. Thermochimica Acta, 2018, 669: 99-108. |
121 | JIANG Feng, WANG Shanshan, XU Yuebing, et al. Catalytic activity for CO2 hydrogenation is linearly dependent on generated oxygen vacancies over CeO2-supported Pd catalysts[J]. ChemCatChem, 2022, 14: e202200422. |
[1] | WU Da, JIANG Shujiao, WEI Qiang, YUAN Shenghua, YANG Gang, ZHANG Cheng. Research progress on efficient utilization technology of residue in energy transition [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2343-2353. |
[2] | JIANG Andi, DING Xuexing, WANG Shipeng, DING Junhua, LI Ning. Research progress on thermodynamic performance of supercritical CO2 dry gas seal [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2354-2369. |
[3] | GUI Xin, CHEN Huiyong, BAI Boyang, JIA Yongliang, MA Xiaoxun. Catalytic hydrogenation of pyrene over Mo-doped NiC/Al-MCM-41 [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2386-2395. |
[4] | DING Sijia, JIANG Shujiao, YANG Zhanlin, PENG Shaozhong, JIANG Qianmin. Design of heavy oil hydrodenitrogenation catalysts based on hydrogenation performance determined by structure of nitrogen compounds [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2436-2448. |
[5] | LIU Miao, JIAO Yingying, DING Ling, LI Chengcheng, HE Ying, SUN Liangliang, HAO Qingqing, CHEN Huiyong, LUO Qunxing. Acid-catalyzed dehydration of hexoses to 5-hydroxymethylfurfural: Reaction, separation and process coupling [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2526-2543. |
[6] | WANG Mengyu, FAN Hongxia, LIANG Changhai, LI Wenying. Influence of zeolite confinement effect on its acidic characterization and catalytic performance [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2600-2610. |
[7] | XIE Xiaojin, ZHANG Xiaoxue, LIU Xiaoling, CHONG Mingben, CHENG Dangguo, CHEN Fengqiu. Effect of acidic properties of single-crystalline hierarchical ZSM-5 zeolite on its activity and mass transfer in n-heptane catalytic cracking [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2661-2672. |
[8] | FENG Yongqiang, WANG Jieru, WANG Chaoxian, LI Fang, SU Wanting, SUN Yu, ZHAO Binran. Influence of Ni, Fe, and Cu loaded on γ-Al2O3 in CO2/CH4 conversion via dielectric barrier discharge plasma [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2705-2713. |
[9] | XIE Zhongkai, SHI Weidong. Research progress of charge polarized photocatalysts in photoconversion carbon dioxide into multi-carbon chemicals [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2714-2722. |
[10] | ZHOU Yuntao, WANG Hongxing, LI Xingang, CUI Lifeng. Application and research progress of CeO2 support in CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2723-2738. |
[11] | HUANG Peng, ZOU Ying, WANG Baohuan, WANG Xiaoyan, ZHAO Yong, LAING Xin, HU Di. Research progress of electrocatalysts towards electrocatalytic reduction reaction of carbon dioxide to syngas [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2760-2775. |
[12] | ZHOU Qiuming, NIU Congcong, LYU Shuaishuai, LI Hongwei, WEN Fuli, XU Run, LI Mingfeng. Promoting CO2 hydrogenation to methanol through product transformation and separation [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2776-2785. |
[13] | LIU Ruolu, TANG Haibo, HE Feifei, LUO Fengying, WANG Jinge, YANG Na, LI Hongwei, ZHANG Ruiming. Recent research and prospect of liquid organic hydrogen carries technology [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1731-1741. |
[14] | WU Chenhe, LIU Yumin, YANG Xinmin, CUI Jiwei, JIANG Shaokun, YE Jinhua, LIU Lequan. Particulate photocatalysts for light-driven overall water splitting [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1810-1822. |
[15] | LIU Yurong, WANG Xingbao, LI Wenying. Regulation of catalyst acid sites and its effect on the deep hydrogenation performance of anthracene [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1832-1839. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |