Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (5): 2776-2785.DOI: 10.16085/j.issn.1000-6613.2024-0341
• Carbon dioxide capture and utilization • Previous Articles
ZHOU Qiuming(), NIU Congcong(), LYU Shuaishuai, LI Hongwei, WEN Fuli, XU Run, LI Mingfeng()
Received:
2024-03-01
Revised:
2024-04-26
Online:
2024-06-15
Published:
2024-05-15
Contact:
LI Mingfeng
周秋明(), 牛丛丛(), 吕帅帅, 李红伟, 文富利, 徐润, 李明丰()
通讯作者:
李明丰
作者简介:
周秋明(1993—),女,博士,研究方向为C1化学。E-mail:zhouqiuming.ripp@sinopec.com基金资助:
CLC Number:
ZHOU Qiuming, NIU Congcong, LYU Shuaishuai, LI Hongwei, WEN Fuli, XU Run, LI Mingfeng. Promoting CO2 hydrogenation to methanol through product transformation and separation[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2776-2785.
周秋明, 牛丛丛, 吕帅帅, 李红伟, 文富利, 徐润, 李明丰. 通过产物转化分离推动CO2加氢制甲醇过程的研究进展[J]. 化工进展, 2024, 43(5): 2776-2785.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0341
催化剂 | 温度/℃ | 压力/MPa | CO2转化率/% | 低碳烯烃选择性/% | 参考文献 |
---|---|---|---|---|---|
In2O3-ZrO2/SAPO-34 | 400 | 3.0 | 35.0 | 80.0 | [ |
ZnO-ZrO2/SAPO-34 | 380 | 2.0 | 12.6 | 80.0 | [ |
ZnGa2O4/SAPO-34 | 370 | 3.0 | 13.0 | 86.0 | [ |
ZnAl2O4/SAPO-34 | 370 | 3.0 | 15.0 | 87.0 | [ |
In2O3/SAPO-34 | 360 | 2.5 | 34.6 | 70.0 | [ |
CZZ@SAPO-34 | 400 | 2.0 | 19.6 | 60.5 | [ |
CuO-ZnO/SAPO-34 | 400 | 3.0 | 43.5 | 63.9 | [ |
ZnZrO x /bio-SAPO-34 | 380 | 3.0 | 13.8 | 83.0 | [ |
ZZ/4%MnSAPO-34 | 380 | 2.0 | 17.3 | 83.2 | [ |
催化剂 | 温度/℃ | 压力/MPa | CO2转化率/% | 低碳烯烃选择性/% | 参考文献 |
---|---|---|---|---|---|
In2O3-ZrO2/SAPO-34 | 400 | 3.0 | 35.0 | 80.0 | [ |
ZnO-ZrO2/SAPO-34 | 380 | 2.0 | 12.6 | 80.0 | [ |
ZnGa2O4/SAPO-34 | 370 | 3.0 | 13.0 | 86.0 | [ |
ZnAl2O4/SAPO-34 | 370 | 3.0 | 15.0 | 87.0 | [ |
In2O3/SAPO-34 | 360 | 2.5 | 34.6 | 70.0 | [ |
CZZ@SAPO-34 | 400 | 2.0 | 19.6 | 60.5 | [ |
CuO-ZnO/SAPO-34 | 400 | 3.0 | 43.5 | 63.9 | [ |
ZnZrO x /bio-SAPO-34 | 380 | 3.0 | 13.8 | 83.0 | [ |
ZZ/4%MnSAPO-34 | 380 | 2.0 | 17.3 | 83.2 | [ |
催化剂 | 温度/℃ | 压力/MPa | CO2转化率/% | C5+中芳烃选择性/% | 参考文献 |
---|---|---|---|---|---|
ZnZrO/ZSM-5 | 320 | 4.0 | 14.1 | 73.0 | [ |
ZnZrO x /HZSM-5 | 315 | 3.0 | 17.5 | 60.3 | [ |
ZnO-ZrO2/ZSM-5 | 340 | 4.0 | 14.0 | 74.0 | [ |
ZnO/ZrO2-Z5-300 | 340 | 3.0 | 9.0 | 70.0 | [ |
ZnCrO x -ZnZSM-5 | 320 | 5.0 | 19.9 | 81.1 | [ |
ZnCr2O4-ZSM-5 | 350 | 4.0 | 23.4 | 66.1 | [ |
ZnAlO x /HZSM-5 | 320 | 3.0 | 5.8 | 73.9 | [ |
Cr2O3/H-ZSM-5 | 350 | 3.0 | 34.5 | 76.0 | [ |
Cr2O3/Zn-ZSM-5@SiO2 | 350 | 3.0 | 22.1 | 58.4 | [ |
In2O3/HZSM-5 | 320 | 3.0 | 23.2 | 34.1 | [ |
ZnFeO x -4.25Na/S-HZSM-5 | 320 | 3.0 | 41.2 | 75.6 | [ |
催化剂 | 温度/℃ | 压力/MPa | CO2转化率/% | C5+中芳烃选择性/% | 参考文献 |
---|---|---|---|---|---|
ZnZrO/ZSM-5 | 320 | 4.0 | 14.1 | 73.0 | [ |
ZnZrO x /HZSM-5 | 315 | 3.0 | 17.5 | 60.3 | [ |
ZnO-ZrO2/ZSM-5 | 340 | 4.0 | 14.0 | 74.0 | [ |
ZnO/ZrO2-Z5-300 | 340 | 3.0 | 9.0 | 70.0 | [ |
ZnCrO x -ZnZSM-5 | 320 | 5.0 | 19.9 | 81.1 | [ |
ZnCr2O4-ZSM-5 | 350 | 4.0 | 23.4 | 66.1 | [ |
ZnAlO x /HZSM-5 | 320 | 3.0 | 5.8 | 73.9 | [ |
Cr2O3/H-ZSM-5 | 350 | 3.0 | 34.5 | 76.0 | [ |
Cr2O3/Zn-ZSM-5@SiO2 | 350 | 3.0 | 22.1 | 58.4 | [ |
In2O3/HZSM-5 | 320 | 3.0 | 23.2 | 34.1 | [ |
ZnFeO x -4.25Na/S-HZSM-5 | 320 | 3.0 | 41.2 | 75.6 | [ |
1 | 祝贺, 汪丹峰, 陈倩倩, 等. 二氧化碳加氢制甲醇过程热力学分析[J]. 天然气化工(C1化学与化工), 2015, 40(3): 21-25. |
ZHU He, WANG Danfeng, CHEN Qianqian, et al. Thermodynamic analysis of CO2 hydrogenation to methanol[J]. Natural Gas Chemical Industry, 2015, 40(3): 21-25. | |
2 | GAO Peng, DANG Shanshan, LI Shenggang, et al. Direct production of lower olefins from CO2 conversion via bifunctional catalysis[J]. ACS Catalysis, 2018, 8(1): 571-578. |
3 | ZHONG Jiawei, YANG Xiaofeng, WU Zhilian, et al. State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol[J]. Chemical Society Reviews, 2020, 49(5): 1385-1413. |
4 | Maria RONDA-LLORET, ROTHENBERG Gadi, Raveendran SHIJU N. A critical look at direct catalytic hydrogenation of carbon dioxide to olefins[J]. ChemSusChem, 2019, 12(17): 3896-3914. |
5 | LI Zelong, WANG Jijie, QU Yuanzhi, et al. Highly selective conversion of carbon dioxide to lower olefins[J]. ACS Catalysis, 2017, 7(12): 8544-8548. |
6 | LIU Xiaoliang, WANG Mengheng, YIN Haoren, et al. Tandem catalysis for hydrogenation of CO and CO2 to lower olefins with bifunctional catalysts composed of spinel oxide and SAPO-34[J]. ACS Catalysis, 2020, 10(15): 8303-8314. |
7 | LIU Zhongmin, LIANG Juan. Methanol to olefin conversion catalysts[J]. Current Opinion in Solid State and Materials Science, 1999, 4(1): 80-84. |
8 | NUMPILAI Thanapa, WATTANAKIT Chularat, CHAREONPANICH Metta, et al. Optimization of synthesis condition for CO2 hydrogenation to light olefins over In2O3 admixed with SAPO-34[J]. Energy Conversion and Management, 2019, 180: 511-523. |
9 | CHEN Jingyu, WANG Xu, WU Dakai, et al. Hydrogenation of CO2 to light olefins on CuZnZr@(Zn-) SAPO-34 catalysts: Strategy for product distribution[J]. Fuel, 2019, 239: 44-52. |
10 | 王鹏飞, 查飞, 常玥. CuO-ZnO/(SAPO-34)-高岭土催化CO2加氢合成低碳烯烃[J]. 精细化工, 2017, 34(6): 662-668. |
WANG Pengfei, ZHA Fei, CHANG Yue. Hydrogenation of carbon dioxide to light olefins over CuO-ZnO/(SAPO-34)-Kaolin catalyst[J]. Fine Chemicals, 2017, 34(6): 662-668. | |
11 | TIAN Pan, ZHAN Guowu, TIAN Jian, et al. Direct CO2 hydrogenation to light olefins over ZnZrO x mixed with hierarchically hollow SAPO-34 with rice husk as green silicon source and template[J]. Applied Catalysis B: Environmental, 2022, 315: 121572. |
12 | CHANG Xiaoning, HONDO E., HU Qianwen, et al. Effect of acidity and oxygen vacancy in Mn loaded SAPO-34 on CO2 hydrogenation to light olefin[J]. Fuel, 2023, 353: 129160. |
13 | GUISNET Michel, COSTA Luís, RIBEIRO Fernando Ramôa. Prevention of zeolite deactivation by coking[J]. Journal of Molecular Catalysis A: Chemical, 2009, 305(1/2): 69-83. |
14 | SCHMIDT Franz, PAASCH Silvia, BRUNNER Eike, et al. Carbon templated SAPO-34 with improved adsorption kinetics and catalytic performance in the MTO-reaction[J]. Microporous and Mesoporous Materials, 2012, 164: 214-221. |
15 | SOLTANALI Saeed, DARIAN Jafar Towfighi. Synthesis of mesoporous SAPO-34 catalysts in the presence of MWCNT, CNF, and GO as hard templates in MTO process[J]. Powder Technology, 2019, 355: 127-134. |
16 | SUN Qiming, WANG Ning, XI Dongyang, et al. Organosilane surfactant-directed synthesis of hierarchical porous SAPO-34 catalysts with excellent MTO performance[J]. Chemical Communications, 2014, 50(49): 6502-6505. |
17 | WANG Chan, YANG Miao, TIAN Peng, et al. Dual template-directed synthesis of SAPO-34 nanosheet assemblies with improved stability in the methanol to olefins reaction[J]. Journal of Materials Chemistry A, 2015, 3(10): 5608-5616. |
18 | CHEN Huiyong, WANG Manyun, YANG Mengfei, et al. Organosilane surfactant-directed synthesis of nanosheet-assembled SAPO-34 zeolites with improved MTO catalytic performance[J]. Journal of Materials Science, 2019, 54(11): 8202-8215. |
19 | REN Shu, LIU Guojuan, WU Xian, et al. Enhanced MTO performance over acid treated hierarchical SAPO-34[J]. Chinese Journal of Catalysis, 2017, 38(1): 123-130. |
20 | JIN Wenlong, WANG Baojie, Pengfei TUO, et al. Selective desilication, mesopores formation, and MTO reaction enhancement via citric acid treatment of zeolite SAPO-34[J]. Industrial & Engineering Chemistry Research, 2018, 57(12): 4231-4236. |
21 | LIU Xiu, REN Shu, ZENG Gaofeng, et al. Coke suppression in MTO over hierarchical SAPO-34 zeolites[J]. RSC Advances, 2016, 6(34): 28787-28791. |
22 | PAN Yingying, CHEN Guangrui, YANG Guoju, et al. Efficient post-synthesis of hierarchical SAPO-34 zeolites via organic amine etching under hydrothermal conditions and their enhanced MTO performance[J]. Inorganic Chemistry Frontiers, 2019, 6(5): 1299-1303. |
23 | CHEN Xiaoxin, VICENTE Aurélie, QIN Zhengxing, et al. The preparation of hierarchical SAPO-34 crystals via post-synthesis fluoride etching[J]. Chemical Communications, 2016, 52(17): 3512-3515. |
24 | CHEN Xiaoxin, XI Dongyang, SUN Qiming, et al. A top-down approach to hierarchical SAPO-34 zeolites with improved selectivity of olefin[J]. Microporous and Mesoporous Materials, 2016, 234: 401-408. |
25 | ZHANG Shichao, CHEN Wenbin, YANG Ling, et al. Effect of morphology and acidity control of Ni-SAPO-34 zeolite on catalytic performance of dimethyl ether to olefins[J]. Journal of Solid State Chemistry, 2021, 303: 122503. |
26 | DAI Weili, CAO Ge, YANG Liu, et al. Insights into the catalytic cycle and activity of methanol-to-olefin conversion over low-silica AlPO-34 zeolites with controllable Brønsted acid density[J]. Catalysis Science & Technology, 2017, 7(3): 607-618. |
27 | GAO Beibei, YANG Miao, QIAO Yuyan, et al. A low-temperature approach to synthesize low-silica SAPO-34 nanocrystals and their application in the methanol-to-olefins (MTO) reaction[J]. Catalysis Science & Technology, 2016, 6(20): 7569-7578. |
28 | MIRZA Khadijeh, GHADIRI Mohammad, HAGHIGHI Mohammad, et al. Hydrothermal synthesize of modified Fe, Ag and K-SAPO-34 nanostructured catalysts used in methanol conversion to light olefins[J]. Microporous and Mesoporous Materials, 2018, 260: 155-165. |
29 | SALIH Hassan A, MURAZA Oki, ABUSSAUD Basim, et al. Catalytic enhancement of SAPO-34 for methanol conversion to light olefins using in situ metal incorporation[J]. Industrial & Engineering Chemistry Research, 2018, 57(19): 6639-6646. |
30 | LI Zelong, QU Yuanzhi, WANG Jijie, et al. Highly selective conversion of carbon dioxide to aromatics over tandem catalysts[J]. Joule, 2019, 3(2): 570-583. |
31 | WANG Ting, YANG Chengguang, GAO Peng, et al. ZnZrO x integrated with chain-like nanocrystal HZSM-5 as efficient catalysts for aromatics synthesis from CO2 hydrogenation[J]. Applied Catalysis B: Environmental, 2021, 286: 119929. |
32 | ZHOU Cheng, SHI Jiaqing, ZHOU Wei, et al. Highly active ZnO-ZrO2 aerogels integrated with H-ZSM-5 for aromatics synthesis from carbon dioxide[J]. ACS Catalysis, 2020, 10(1): 302-310. |
33 | ZHANG Xinbao, ZHANG Anfeng, JIANG Xiao, et al. Utilization of CO2 for aromatics production over ZnO/ZrO2-ZSM-5 tandem catalyst[J]. Journal of CO2 Utilization, 2019, 29: 140-145. |
34 | ZHANG Junfeng, ZHANG Meng, CHEN Shuyao, et al. Hydrogenation of CO2 into aromatics over a ZnCrO x -zeolite composite catalyst[J]. Chemical Communications, 2019, 55(7): 973-976. |
35 | GAO Weizhe, GUO Lisheng, CUI Yu, et al. Selective conversion of CO2 into para-xylene over a ZnCr2O4-ZSM-5 catalyst[J]. ChemSusChem, 2020, 13(24): 6541-6545. |
36 | NI Youming, CHEN Zhiyang, FU Yi, et al. Selective conversion of CO2 and H2 into aromatics[J]. Nature Communications, 2018, 9(1): 3457. |
37 | WANG Yang, TAN Li, TAN Minghui, et al. Rationally designing bifunctional catalysts as an efficient strategy to boost CO2 hydrogenation producing value-added aromatics[J]. ACS Catalysis, 2019, 9(2): 895-901. |
38 | WANG Yang, GAO Weizhe, KAZUMI Shun, et al. Direct and oriented conversion of CO2 into value-added aromatics[J]. Chemistry, 2019, 25(20): 5149-5153. |
39 | 焦春学, 查飞, 田海锋. 不同晶型In2O3/片状HZSM-5串联催化剂催化CO2加氢制芳烃[J]. 延安大学学报(自然科学版), 2023, 42(2): 8-15. |
JIAO Chunxue, ZHA Fei, TIAN Haifeng. Catalytic hydrogenation of CO2 to aromatics by tandem catalysts of different crystalline In2O3/sheet HZSM-5[J]. Journal of Yan’an University (Natural Science Edition), 2023, 42(2): 8-15. | |
40 | CUI Xu, GAO Peng, LI Shenggang, et al. Selective production of aromatics directly from carbon dioxide hydrogenation[J]. ACS Catalysis, 2019, 9(5): 3866-3876. |
41 | 杜康. 甲醇制芳烃催化剂性能研究[D]. 西安: 西北大学, 2021. |
DU Kang. Performance control of methanol to aromatics catalyst[D]. Xi’an: Northwest University, 2021. | |
42 | MARTÍNEZ-ESPÍN Juan S, DE WISPELAERE Kristof, JANSSENS Ton V W, et al. Hydrogen transfer versus methylation: On the genesis of aromatics formation in the methanol-to-hydrocarbons reaction over H-ZSM-5[J]. ACS Catalysis, 2017, 7(9): 5773-5780. |
43 | Sebastian MÜLLER, LIU Yue, KIRCHBERGER Felix M, et al. Hydrogen transfer pathways during zeolite catalyzed methanol conversion to hydrocarbons[J]. Journal of the American Chemical Society, 2016, 138(49): 15994-16003. |
44 | Sebastian MÜLLER, LIU Yue, VISHNUVARTHAN Muthusamy, et al. Coke formation and deactivation pathways on H-ZSM-5 in the conversion of methanol to olefins[J]. Journal of Catalysis, 2015, 325: 48-59. |
45 | 潘红艳, 田敏, 何志艳, 等. 甲醇制烯烃用ZSM-5分子筛的研究进展[J]. 化工进展, 2014, 33(10): 2625-2633. |
PAN Hongyan, TIAN Min, HE Zhiyan, et al. Advances in research on modified ZSM-5 molecular sieves for conversion of methanol to olefins[J]. Chemical Industry and Engineering Progress, 2014, 33(10): 2625-2633. | |
46 | GAO Pan, WANG Qiang, XU Jun, et al. Brønsted/lewis acid synergy in methanol-to-aromatics conversion on Ga-modified ZSM-5 zeolites, As studied by solid-state NMR spectroscopy[J]. ACS Catalysis, 2018, 8(1): 69-74. |
47 | GROEN Johan C, MOULIJN Jacob A, Javier PÉREZ-RAMÍREZ. Decoupling mesoporosity formation and acidity modification in ZSM-5 zeolites by sequential desilication–dealumination[J]. Microporous and Mesoporous Materials, 2005, 87(2): 153-161. |
48 | LI Junjie, LIU Min, GUO Xinwen, et al. In situ aluminum migration into zeolite framework during methanol-to-propylene reaction: An innovation to design superior catalysts[J]. Industrial & Engineering Chemistry Research, 2018, 57(24): 8190-8199. |
49 | SUN Liying, WANG Yaquan, CHEN Hengbao, et al. Direct synthesis of hierarchical ZnZSM-5 with addition of CTAB in a seeding method and improved catalytic performance in methanol to aromatics reaction[J]. Catalysis Today, 2018, 316: 91-98. |
50 | 刘备, 鲁思武, 刘恩周, 等. 小晶粒HZSM-5分子筛合成及甲醇制芳烃催化性能[J]. 化学工程, 2018, 46(8): 11-15. |
LIU Bei, LU Siwu, LIU Enzhou, et al. Synthesis of small crystal HZSM-5 zeolite and catalytic performance in methanol to aromatics[J]. Chemical Engineering (China), 2018, 46(8): 11-15. | |
51 | 李政杭, 刘民, 李俊杰, 等. 碱处理调控ZSM-5孔结构及其在甲醇制芳烃中的性能研究[J]. 现代化工, 2019, 39(11): 67-72. |
LI Zhenghang, LIU Min, LI Junjie, et al. Modification of ZSM-5 by alkali treatment and its performance in methanol to aromatics[J]. Modern Chemical Industry, 2019, 39(11): 67-72. | |
52 | DENG Yuzhen, LI Zhan, CHEN Tao, et al. Low-cost and facile fabrication of defect-free water permeable membrane for CO2 hydrogenation to methanol[J]. Chemical Engineering Journal, 2022, 435: 133554. |
53 | JUAREZ Ester, LASOBRAS Javier, SOLER Jaime, et al. Polymer-ceramic composite membranes for water removal in membrane reactors[J]. Membranes, 2021, 11(7): 472. |
54 | PHAM Quang Huy, GOUDELI Eirini, SCHOLES Colin A. Selective separation of water and methanol from hydrogen and carbon dioxide at elevated temperature through polyimide and polyimidazole based membranes[J]. Journal of Membrane Science, 2023, 686: 121990. |
55 | RASO R, TOVAR M, LASOBRAS J, et al. Zeolite membranes: Comparison in the separation of H2O/H2/CO2 mixtures and test of a reactor for CO2 hydrogenation to methanol[J]. Catalysis Today, 2021, 364: 270-275. |
56 | LI Huazheng, QIU Chenglong, REN Shoujie, et al. Na+-gated water-conducting nanochannels for boosting CO2 conversion to liquid fuels[J]. Science, 2020, 367(6478): 667-671. |
57 | YUE Wenzhe, LI Yanhong, WEI Wan, et al. Highly selective CO2 conversion to methanol in a bifunctional zeolite catalytic membrane reactor[J]. Angewandte Chemie, 2021, 133(33): 18437-18442. |
58 | GE Qinqin, SHAO Jia, WANG Zhengbao, et al. Effects of the synthesis hydrogel on the formation of zeolite LTA membranes[J]. Microporous and Mesoporous Materials, 2012, 151: 303-310. |
59 | MOHAMMADI Toraj, Afshin PAK. Making zeolite A membrane from Kaolin by electrophoresis[J]. Microporous and Mesoporous Materials, 2002, 56(1): 81-88. |
60 | OONKHANOND Bovornlak, MULLINS Michael E. The preparation and analysis of zeolite ZSM-5 membranes on porous alumina supports[J]. Journal of Membrane Science, 2001, 194(1): 3-13. |
61 | XU Xiaochun, YANG Weishen, LIU Jie, et al. Synthesis of NaA zeolite membrane on a ceramic hollow fiber[J]. Journal of Membrane Science, 2004, 229(1/2): 81-85. |
62 | YAN Yushan, DAVIS Mark E, GAVALAS George R. Preparation of zeolite ZSM-5 membranes by In-situ crystallization on porous. alpha.-Al2O3 [J]. Industrial & Engineering Chemistry Research, 1995, 34(5): 1652-1661. |
63 | Jaco ZAH, KRIEG Henning M, BREYTENBACH Jaco C. Pervaporation and related properties of time-dependent growth layers of zeolite NaA on structured ceramic supports[J]. Journal of Membrane Science, 2006, 284(1/2): 276-290. |
64 | ZHANG Yanfeng, XU Zhongqiang, CHEN Qingling. Synthesis of small crystal polycrystalline mordenite membrane[J]. Journal of Membrane Science, 2002, 210(2): 361-368. |
65 | CUI Ying, KITA Hidetoshi, OKAMOTO Ken-ichi. Preparation and gas separation performance of zeolite T membrane[J]. Journal of Materials Chemistry, 2004, 14(5): 924-932. |
66 | HONG Mei, FALCONER John L, NOBLE Richard D. Modification of zeolite membranes for H2Separation by catalytic cracking of methyldiethoxysilane[J]. Industrial & Engineering Chemistry Research, 2005, 44(11): 4035-4041. |
67 | MASUDA Takao, FUKUMOTO Naohiro, KITAMURA Masahiro, et al. Modification of pore size of MFI-type zeolite by catalytic cracking of silane and application to preparation of H2-separating zeolite membrane[J]. Microporous and Mesoporous Materials, 2001, 48(1/2/3): 239-245. |
68 | NOMURA Mikihiro, YAMAGUCHI Takeo, NAKAO Shin-ichi. Silicalite membranes modified by counterdiffusion CVD technique[J]. Industrial & Engineering Chemistry Research, 1997, 36(10): 4217-4223. |
69 | YAN Yushan, DAVIS Mark E, GAVALAS George R. Preparation of highly selective zeolite ZSM-5 membranes by a post-synthetic coking treatment[J]. Journal of Membrane Science, 1997, 123(1): 95-103. |
70 | 苏静, 张宗飞, 张大洲. 二氧化碳加氢制甲醇的技术进展及展望[J]. 化肥设计, 2022, 60(2): 6-9, 14. |
SU Jing, ZHANG Zongfei, ZHANG Dazhou. Technological progress and prospects of carbon dioxide hydrogenation to methanol[J]. Chemical Fertilizer Design, 2022, 60(2): 6-9, 14. |
[1] | ZHOU Yuntao, WANG Hongxing, LI Xingang, CUI Lifeng. Application and research progress of CeO2 support in CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2723-2738. |
[2] | FANG Yao, LIU Lei, GAO Zhihua, HUANG Wei, ZUO Zhijun. Advances in anode catalysts for photo-assisted direct methanol fuel cells [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2611-2628. |
[3] | WANG Debin, LIN Mengyu, YANG Xue, DONG Dianquan. Preparation and adsorption properties of zinc-doped titanium-based cesium ion sieves [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1953-1961. |
[4] | JIN Binhao, ZHU Xiaoqian, KE Tian, ZHANG Zhiguo, BAO Zongbi, REN Qilong, SU Baogen, YANG Qiwei. Advances in adsorbents for aromatics/cycloalkanes separation [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1863-1881. |
[5] |
ZHANG Pengfei, YAN Zhangyan, REN Liang, ZHAGN Kui, LIANG Jialin, ZHAO Guangle, ZHANG Fanbin, HU Zhihai.
Research progress in the catalytic hydrodealkylation of C |
[6] | WANG Xiong, YANG Zhenning, LI Yue, SHEN Weifeng. Optimization of methanol distillation process based on chemical mechanism and industrial digital twinning modeling [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 310-319. |
[7] | WANG Kexu, ZHANG Xiangping, WANG Hongyan, BAI Yan, WANG Hui. Progress on current-responsive catalysts and their applications in intensifying typical reactions [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 49-59. |
[8] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[9] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[10] | XU Jiaheng, LI Yongsheng, LUO Chunhuan, SU Qingquan. Optimization of methanol steam reforming process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 41-46. |
[11] | SHU Bin, CHEN Jianhong, XIONG Jian, WU Qirong, YU Jiangtao, YANG Ping. Necessity analysis of promoting the development of green methanol under the goal of carbon neutrality [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4471-4478. |
[12] | DONG Jiayu, WANG Simin. Experimental on ultrasound enhancement of para-xylene crystallization characteristics and regulation mechanism [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4504-4513. |
[13] | YANG Xuzhao, LI Qing, YUAN Kangkang, ZHANG Yingying, HAN Jingli, WU Shide. Thermodynamic properties of Gemini ionic liquid based deep eutectic solvents [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3123-3129. |
[14] | YIN Pengzhen, WU Qin, LI Hansheng. Advances in catalysts for liquid-phase selective oxidation of methyl aromatic hydrocarbons [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2916-2943. |
[15] | WANG Zijian, KE Ming, SONG Zhaozheng, LI Jiahan, TONG Yanbing, SUN Jinru. Progress in alkylation of gasoline with molecular sieve catalyst for benzene reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2371-2389. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |