Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (9): 4716-4730.DOI: 10.16085/j.issn.1000-6613.2022-1947
• Materials science and technology • Previous Articles Next Articles
GE Yafen(), SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun()
Received:
2022-10-19
Revised:
2023-04-07
Online:
2023-09-28
Published:
2023-09-15
Contact:
GONG Yanjun
葛亚粉(), 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军()
通讯作者:
巩雁军
作者简介:
葛亚粉(1995—),女,博士研究生,研究方向为新材料与催化剂工程。E-mail:18865518179@163.com。
基金资助:
CLC Number:
GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730.
葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1947
拓扑结构 | 分子筛 | Si/Al | 比表面积/m2·g-1 | VOCs | 吸附容量/mmol·g-1 | 相对湿度/% | 吸附温度/℃ | 文献 |
---|---|---|---|---|---|---|---|---|
MFI | Silicate-1 | ∞ | 377 | 正己烷 | 1.30 | 0 | 25 | [ |
MFI | Silicate-1 | ∞ | 377 | 丙酮 | 1.82 | 0 | 25 | [ |
MFI | Silicate-1 | ∞ | 377 | 对二甲苯 | 1.28 | 0 | 25 | [ |
*BEA | Beta | — | 493 | 正己烷 | 1.23 | 0 | 25 | [ |
*BEA | Beta | — | 493 | 丙酮 | 2.15 | 0 | 25 | [ |
*BEA | Beta | — | 493 | 对二甲苯 | 1.17 | 0 | 25 | [ |
STT | SSZ-23 | — | 536 | 正己烷 | 1.13 | 0 | 25 | [ |
STT | SSZ-23 | — | 536 | 丙酮 | 2.43 | 0 | 25 | [ |
STT | SSZ-23 | — | 536 | 对二甲苯 | 0.97 | 0 | 25 | [ |
CHA | Chabazite | — | 803 | 正己烷 | 0.18 | 0 | 25 | [ |
CHA | Chabazite | — | 803 | 丙酮 | 0.10 | 0 | 25 | [ |
CHA | Chabazite | — | 803 | 对二甲苯 | 0.04 | 0 | 25 | [ |
FAU | NaX | 1.1 | 938 | 甲苯 | 2.75 | 0 | 30 | [ |
FAU | USY | 23.7 | 893 | 甲苯 | 1.99 | 0 | 30 | [ |
MFI | Silicate-1 | ∞ | 365 | 甲苯 | 1.49 | 0 | 30 | [ |
FAU | NaY | 2.5 | 758 | 正己烷 | 1.25 | 0 | 30 | [ |
*BEA | Beta | 412.0 | 781 | 甲苯 | 4.13 | 30 | 35 | [ |
FAU | NaY | 5.42 | 888 | 甲苯 | 3.2 | 0 | 25 | [ |
FAU | USY | 100 | 646 | 甲苯 | 0.93 | 0 | — | [ |
FAU | USY | 100 | 646 | 甲苯 | 0.36 | 40 | — | [ |
MFI | ZSM-5 | 400 | 364 | 甲苯 | 0.69 | 0 | — | [ |
MFI | ZSM-5 | 400 | 364 | 甲苯 | 0.48 | 40 | — | [ |
拓扑结构 | 分子筛 | Si/Al | 比表面积/m2·g-1 | VOCs | 吸附容量/mmol·g-1 | 相对湿度/% | 吸附温度/℃ | 文献 |
---|---|---|---|---|---|---|---|---|
MFI | Silicate-1 | ∞ | 377 | 正己烷 | 1.30 | 0 | 25 | [ |
MFI | Silicate-1 | ∞ | 377 | 丙酮 | 1.82 | 0 | 25 | [ |
MFI | Silicate-1 | ∞ | 377 | 对二甲苯 | 1.28 | 0 | 25 | [ |
*BEA | Beta | — | 493 | 正己烷 | 1.23 | 0 | 25 | [ |
*BEA | Beta | — | 493 | 丙酮 | 2.15 | 0 | 25 | [ |
*BEA | Beta | — | 493 | 对二甲苯 | 1.17 | 0 | 25 | [ |
STT | SSZ-23 | — | 536 | 正己烷 | 1.13 | 0 | 25 | [ |
STT | SSZ-23 | — | 536 | 丙酮 | 2.43 | 0 | 25 | [ |
STT | SSZ-23 | — | 536 | 对二甲苯 | 0.97 | 0 | 25 | [ |
CHA | Chabazite | — | 803 | 正己烷 | 0.18 | 0 | 25 | [ |
CHA | Chabazite | — | 803 | 丙酮 | 0.10 | 0 | 25 | [ |
CHA | Chabazite | — | 803 | 对二甲苯 | 0.04 | 0 | 25 | [ |
FAU | NaX | 1.1 | 938 | 甲苯 | 2.75 | 0 | 30 | [ |
FAU | USY | 23.7 | 893 | 甲苯 | 1.99 | 0 | 30 | [ |
MFI | Silicate-1 | ∞ | 365 | 甲苯 | 1.49 | 0 | 30 | [ |
FAU | NaY | 2.5 | 758 | 正己烷 | 1.25 | 0 | 30 | [ |
*BEA | Beta | 412.0 | 781 | 甲苯 | 4.13 | 30 | 35 | [ |
FAU | NaY | 5.42 | 888 | 甲苯 | 3.2 | 0 | 25 | [ |
FAU | USY | 100 | 646 | 甲苯 | 0.93 | 0 | — | [ |
FAU | USY | 100 | 646 | 甲苯 | 0.36 | 40 | — | [ |
MFI | ZSM-5 | 400 | 364 | 甲苯 | 0.69 | 0 | — | [ |
MFI | ZSM-5 | 400 | 364 | 甲苯 | 0.48 | 40 | — | [ |
催化剂 | VOCs | T50/℃ | T90/℃ | VOCs浓度/μL·L-1 | 反应流速/mL·min-1 | 空速/mL·g-1·h-1 | 参考文献 |
---|---|---|---|---|---|---|---|
10%Co/MCM-22 | 甲苯 | 293 | 307 | 1000 | 100 | 60000 | [ |
PdCu/ZSM-5 | 甲苯 | — | 152 | 50 | 30 | 36000 | [ |
Cu-ZSM-5 | 正丁胺 | — | 279 | 375 | 100 | 12000 | [ |
Cu-Hβ | 正丁胺 | 163 | 340 | 375 | 100 | 12000 | [ |
Cu-SAPO-34 | 正丁胺 | 275 | 330 | 375 | 100 | 12000 | [ |
Cu-MCM-22 | 正丁胺 | 177 | 280 | 375 | 100 | 12000 | [ |
Co3O4/HZSM-5/β-CD | 甲苯 | 281 | 288 | — | 100 | 15000 | [ |
Co3O4/ZSM-5 | 二氯甲烷 | — | 370 | 1000 | 100 | 30000 | [ |
MnO x /HZSM-5 | 甲苯 | 245 | 255 | — | 100 | 15000 | [ |
Pt/CsZSM-5-60 | 甲苯 | 167 | 170 | 1000 | 100 | 60000 | [ |
Pt/ZSM-5 | 甲苯 | 147 | 155 | 1000 | 100 | 60000 | [ |
Pd3@Beta | 甲苯 | 169 | — | 1000 | 100 | 60000 | [ |
PtMn0.2@ZSM5 | 甲苯 | 160 | 175 | 800 | 50 | 30000 | [ |
Pt@ZSM-5 | 甲苯 | 201 | — | 1000 | 100 | 60000 | [ |
催化剂 | VOCs | T50/℃ | T90/℃ | VOCs浓度/μL·L-1 | 反应流速/mL·min-1 | 空速/mL·g-1·h-1 | 参考文献 |
---|---|---|---|---|---|---|---|
10%Co/MCM-22 | 甲苯 | 293 | 307 | 1000 | 100 | 60000 | [ |
PdCu/ZSM-5 | 甲苯 | — | 152 | 50 | 30 | 36000 | [ |
Cu-ZSM-5 | 正丁胺 | — | 279 | 375 | 100 | 12000 | [ |
Cu-Hβ | 正丁胺 | 163 | 340 | 375 | 100 | 12000 | [ |
Cu-SAPO-34 | 正丁胺 | 275 | 330 | 375 | 100 | 12000 | [ |
Cu-MCM-22 | 正丁胺 | 177 | 280 | 375 | 100 | 12000 | [ |
Co3O4/HZSM-5/β-CD | 甲苯 | 281 | 288 | — | 100 | 15000 | [ |
Co3O4/ZSM-5 | 二氯甲烷 | — | 370 | 1000 | 100 | 30000 | [ |
MnO x /HZSM-5 | 甲苯 | 245 | 255 | — | 100 | 15000 | [ |
Pt/CsZSM-5-60 | 甲苯 | 167 | 170 | 1000 | 100 | 60000 | [ |
Pt/ZSM-5 | 甲苯 | 147 | 155 | 1000 | 100 | 60000 | [ |
Pd3@Beta | 甲苯 | 169 | — | 1000 | 100 | 60000 | [ |
PtMn0.2@ZSM5 | 甲苯 | 160 | 175 | 800 | 50 | 30000 | [ |
Pt@ZSM-5 | 甲苯 | 201 | — | 1000 | 100 | 60000 | [ |
1 | 马超, 薛志钢, 李树文, 等. VOCs排放、污染以及控制对策[J]. 环境工程技术学报, 2012, 2(2): 103-109. |
MA Chao, XUE Zhigang, LI Shuwen, et al. VOCs emission, pollution and control measures[J]. Journal of Environmental Engineering Technology, 2012, 2(2): 103-109. | |
2 | Ulrich PÖSCHL, SHIRAIWA Manabu. Multiphase chemistry at the atmosphere-biosphere interface influencing climate and public health in the anthropocene[J]. Chemical Reviews, 2015, 115(10): 4440-4475. |
3 | 王乐, 刘忠生, 廖昌建, 等. 《石油炼制废气治理工程技术规范》释疑(二)——关于真实蒸气压、加热炉和焚烧炉、火炬的相关问题[J]. 炼油技术与工程, 2019, 49(12): 60-64. |
WANG Le, LIU Zhongsheng, LIAO Changjian, et al. Explanation to“Technical Specifications of Waste Gas Treatment Engineering in Petroleum Refining Industry”(Ⅱ)—Issues related to true vapor pressure, heating furnace, incinerator, torch[J]. Petroleum Refinery Engineering, 2019, 49(12): 60-64. | |
4 | 曾鸣, 王永利, 张硕, 等. “十四五”能源规划与“30·60”双碳目标实现过程中的12个关键问题[J]. 中国电力企业管理, 2021(1): 41-43. |
ZENG Ming, WANG Yongli, ZHANG Shuo, et al. 12 Key issues in the process of “14th Five-Year Plan” energy planning and “30·60” double carbon target realization[J]. China Power Enterprise Management, 2021(1): 41-43. | |
5 | MINELLA Marco, MINERO Claudio. Evaluation of gas/solid photocatalytic performance for the removal of VOCs at ppb and sub-ppb levels[J]. Chemosphere, 2021, 272: 129636. |
6 | ZHOU Lilong, ZHANG Baojian, LI Zhengjie, et al. Amorphous-microcrystal combined manganese oxides for efficiently catalytic combustion of VOCs[J]. Molecular Catalysis, 2020, 489: 110920. |
7 | CHUNG Wei-Chieh, MEI Danhua, TU Xin, et al. Removal of VOCs from gas streams via plasma and catalysis[J]. Catalysis Reviews, 2019, 61(2): 270-331. |
8 | 高博, 曾毅夫, 叶明强, 等. 治理VOCs的新工艺——沸石转轮吸附浓缩+催化燃烧[J]. 中国环保产业, 2016(8): 39-41, 45. |
GAO Bo, ZENG Yifu, YE Mingqiang, et al. A sort of new technology for zeolite rotating wheel adsorption concentration+catalytic combustion[J]. China Environmental Protection Industry, 2016(8): 39-41, 45. | |
9 | ZANG Meng, ZHAO Chaocheng, WANG Yongqiang, et al. A review of recent advances in catalytic combustion of VOCs on perovskite-type catalysts[J]. Journal of Saudi Chemical Society, 2019, 23(6): 645-654. |
10 | FU Xingrui, LIU Yue, YAO Weiyuan, et al. One-step synthesis of bimetallic Pt-Pd/MCM-41 mesoporous materials with superior catalytic performance for toluene oxidation[J]. Catalysis Communications, 2016, 83: 22-26. |
11 | YANG Xueqin, MA Xiuyun, YU Xiaolin, et al. Exploration of strong metal-support interaction in zirconia supported catalysts for toluene oxidation[J]. Applied Catalysis B: Environmental, 2020, 263: 118355. |
12 | OUZZINE M, ROMERO-ANAYA A J, LILLO-RÓDENAS M A, et al. Spherical activated carbons for the adsorption of a real multicomponent VOC mixture[J]. Carbon, 2019, 148: 214-223. |
13 | 冯勇超, 于庆君, 易红宏, 等. MFI型分子筛在VOCs去除领域的研究进展[J]. 材料导报, 2020, 34(17): 17089-17098. |
FENG Yongchao, YU Qingjun, YI Honghong, et al. Research progress of MFI-type zeolites in the field of VOCs removal[J]. Materials Reports, 2020, 34(17): 17089-17098. | |
14 | WU Shuhui, WANG Yaquan, SUN Chao, et al. Novel preparation of binder-free Y/ZSM-5 zeolite composites for VOCs adsorption[J]. Chemical Engineering Journal, 2021, 417: 129172. |
15 | ZHANG Weidong, ZHOU Yong, SHAMZHY Mariya, et al. Total oxidation of toluene and propane over supported Co3O4 catalysts: Effect of structure/acidity of MWW zeolite and cobalt loading[J]. ACS Applied Materials & Interfaces, 2021, 13(13): 15143-15158. |
16 | HE Jiaqin, CHEN Dongyun, LI Najun, et al. Controlled fabrication of mesoporous ZSM-5 zeolite-supported PdCu alloy nanoparticles for complete oxidation of toluene[J]. Applied Catalysis B: Environmental, 2020, 265: 118560. |
17 | 徐如人, 庞文琴, 霍启升, 等. 分子筛与多孔材料化学[M]. 2版. 北京: 科学出版社, 2014. |
XU Ruren, PANG Wenqin, HUO Qisheng, et al. Molecular sieve and porous materials chemistry[M]. 2nd ed. Beijing: Science Press, 2014. | |
18 | 岳旭, 王胜, 高杨, 等. VOCs在吸附剂上吸附性能的热力学研究[J]. 燃料化学学报, 2020, 48(6): 752-760. |
YUE Xu, WANG Sheng, GAO Yang, et al. Thermodynamics analysis on the adsorption behaviors of VOCs on various adsorbents[J]. Journal of Fuel Chemistry and Technology, 2020, 48(6): 752-760. | |
19 | SHEN Xiaoqiang, DU Xuesen, YANG Dafei, et al. Influence of physical structures and chemical modification on VOCs adsorption characteristics of molecular sieves[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106729. |
20 | A-F COSSERON, DAOU T J, TZANIS L, et al. Adsorption of volatile organic compounds in pure silica CHA, BEA, MFI and STT-type zeolites[J]. Microporous and Mesoporous Materials, 2013, 173: 147-154. |
21 | WANG Cheng, GUO Huidong, LENG Shaozheng, et al. Regulation of hydrophilicity/hydrophobicity of aluminosilicate zeolites: A review[J]. Critical Reviews in Solid State and Materials Sciences, 2021, 46(4): 330-348. |
22 | 王旭, 吴玉帅, 杨欣, 等. 沸石分子筛用于VOCs吸附脱除的应用研究进展[J]. 化工进展, 2021, 40(5): 2813-2826. |
WANG Xu, WU Yushuai, YANG Xin, et al. Review of adsorptive removal of volatile organic compounds by zeolite[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2813-2826. | |
23 | 姚露露, 周燕芳, 郭珊珊, 等. Y型与ZSM-5型分子筛吸附VOCs性能的对比[J]. 环境工程学报, 2022, 16(1): 182-189. |
YAO Lulu, ZHOU Yanfang, GUO Shanshan, et al. Comparison of VOCs adsorption performance between Y and ZSM-5 zeolite[J]. Chinese Journal of Environmental Engineering, 2022, 16(1): 182-189. | |
24 | DENG Hua, PAN Tingting, ZHANG Yan, et al. Adsorptive removal of toluene and dichloromethane from humid exhaust on MFI, BEA and FAU zeolites: An experimental and theoretical study[J]. Chemical Engineering Journal, 2020, 394: 124986. |
25 | NIGAR H, NAVASCUÉS N, DE LA IGLESIA O, et al. Removal of VOCs at trace concentration levels from humid air by microwave swing adsorption, kinetics and proper sorbent selection[J]. Separation and Purification Technology, 2015, 151: 193-200. |
26 | WANG Jie, CAO Shiwei, SUN Yu, et al. β zeolite nanostructures with a high SiO2/Al2O3 ratio for the adsorption of volatile organic compounds[J]. ACS Applied Nano Materials, 2021, 4(12): 13257-13266. |
27 | FENG Aihu, YU Yang, MI Le, et al. Synthesis and characterization of hierarchical Y zeolites using NH4HF2 as dealumination agent[J]. Microporous and Mesoporous Materials, 2019, 280: 211-218. |
28 | 周燕芳. 分子筛VOCs吸附性能及其工业化应用研究[D]. 杭州: 浙江大学, 2019. |
ZHOU Yanfang. Adsorption performance and industrial application of zeolites for VOCs[D]. Hangzhou: Zhejiang University, 2019. | |
29 | HESSOU Etienne P, BÉDÉ Lucie A, JABRAOUI Hicham, et al. Adsorption of toluene and water over cationic-exchanged Y zeolites: A DFT exploration[J]. Molecules, 2021, 26(18): 5486. |
30 | DU Yueying, XIAO Gaofei, GUO Ziyang, et al. A high-performance and stable Cu/Beta for adsorption-catalytic oxidation in situ destruction of low concentration toluene[J]. Science of the Total Environment, 2022, 833: 155288. |
31 | Héctor VALDÉS, RIQUELME Andrés L, SOLAR Víctor A, et al. Removal of chlorinated volatile organic compounds onto natural and Cu-modified zeolite: The role of chemical surface characteristics in the adsorption mechanism[J]. Separation and Purification Technology, 2021, 258: 118080. |
32 | LIU Yingshu, LI Ziyi, YANG Xiong, et al. Performance of mesoporous silicas (MCM-41 and SBA-15) and carbon (CMK-3) in the removal of gas-phase naphthalene: Adsorption capacity, rate and regenerability[J]. RSC Advances, 2016, 6(25): 21193-21203. |
33 | LI Chao, REN Yanqun, GOU Jinsheng, et al. Facile synthesis of mesostructured ZSM-5 zeolite with enhanced mass transport and catalytic performances[J]. Applied Surface Science, 2017, 392: 785-794. |
34 | LI Xianfeng, WANG Jian, GUO Yangyang, et al. Adsorption and desorption characteristics of hydrophobic hierarchical zeolites for the removal of volatile organic compounds[J]. Chemical Engineering Journal, 2021, 411: 128558. |
35 | KIM Nam Sun, NUMAN Muhammad, Sung Chan NAM, et al. Dynamic adsorption/desorption of p-xylene on nanomorphic MFI zeolites: Effect of zeolite crystal thickness and mesopore architecture[J]. Journal of Hazardous Materials, 2021, 403: 123659. |
36 | ZHOU Jian, FAN Wei, WANG Yangdong, et al. The essential mass transfer step in hierarchical/nano zeolite: Surface diffusion[J]. National Science Review, 2020, 7(11): 1630-1632. |
37 | TEIXEIRA Andrew R, CHANG Chun-Chih, COOGAN Timothy, et al. Dominance of surface barriers in molecular transport through silicalite-1[J]. The Journal of Physical Chemistry C, 2013, 117(48): 25545-25555. |
38 | QI Xiaoduo, VATTIPALLI Vivek, DAUENHAUER Paul J, et al. Silica nanoparticle mass transfer fins for MFI composite materials[J]. Chemistry of Materials, 2018, 30(7): 2353-2361. |
39 | VATTIPALLI Vivek, QI Xiaoduo, DAUENHAUER Paul J, et al. Long walks in hierarchical porous materials due to combined surface and configurational diffusion[J]. Chemistry of Materials, 2016, 28(21): 7852-7863. |
40 | BI Fukun, ZHANG Xiaodong, CHEN Jinfeng, et al. Excellent catalytic activity and water resistance of UiO-66-supported highly dispersed Pd nanoparticles for toluene catalytic oxidation[J]. Applied Catalysis B: Environmental, 2020, 269: 118767. |
41 | 黄海凤, 戎文娟, 顾勇义, 等. ZSM-5沸石分子筛吸附-脱附VOCs的性能研究[J]. 环境科学学报, 2014, 34(12): 3144-3151. |
HUANG Haifeng, RONG Wenjuan, GU Yongyi, et al. Adsorption and desorption of VOCs on the ZSM-5 zeolite[J]. Acta Scientiae Circumstantiae, 2014, 34(12): 3144-3151. | |
42 | YIN Tao, MENG Xuan, JIN Linpeng, et al. Prepared hydrophobic Y zeolite for adsorbing toluene in humid environment[J]. Microporous and Mesoporous Materials, 2020, 305: 110327. |
43 | PLIEKHOV Oleksii, PLIEKHOVA Olena, Iztok ARČON, et al. Study of water adsorption on EDTA dealuminated zeolite Y[J]. Microporous and Mesoporous Materials, 2020, 302: 110208. |
44 | 张媛媛, 王笠力, 何丽, 等. 分子筛改性及其在高湿条件下对甲苯的吸附[J]. 环境工程学报, 2017, 11(10): 5509-5514. |
ZHANG Yuanyuan, WANG Lili, HE Li, et al. Modification of zeolite and adsorption of toluene under high humidity condition[J]. Chinese Journal of Environmental Engineering, 2017, 11(10): 5509-5514. | |
45 | CHAO Huanping, PENG Chunlun, LEE Chung-Kung, et al. A study on sorption of organic compounds with different water solubilities on octadecyltrichlorosilane-modified NaY zeolite[J]. Journal of the Taiwan Institute of Chemical Engineers, 2012, 43(2): 195-200. |
46 | LIU Li ying, DU Tao, FANG Xin, et al. Preparation of hydrophobic zeolite 13X@SiO2 and their adsorption properties of CO2 and H2O[J]. Advanced Materials Research, 2014, 1053: 311-316. |
47 | LU Shuangchun, LIU Qingling, HAN Rui, et al. Core-shell structured Y zeolite/hydrophobic organic polymer with improved toluene adsorption capacity under dry and wet conditions[J]. Chemical Engineering Journal, 2021, 409: 128194. |
48 | 叶巧苑. 沸石固定床吸附催化燃烧在汽车烘干线有机废气中的应用[J]. 节能与环保, 2022(9): 78-79. |
YE Qiaoyuan. Application of zeolite fixed bed adsorption catalytic combustion in organic waste gas of automobile drying line[J]. Energy Conservation & Environmental Protection, 2022(9): 78-79. | |
49 | TSENG T K, CHU H. The kinetics of catalytic incineration of styrene over a MnO/Fe2O3 catalyst[J]. Science of the Total Environment, 2001, 275(1/2/3): 83-93. |
50 | BANU Ionut, MANTA Corina Mihaela, BERCARU Georgeta, et al. Combustion kinetics of cyclooctane and its binary mixture with o-xylene over a Pt/γ-alumina catalyst[J]. Chemical Engineering Research and Design, 2015, 102: 399-406. |
51 | YANG Cuiting, MIAO Guang, PI Yunhong, et al. Abatement of various types of VOCs by adsorption/catalytic oxidation: A review[J]. Chemical Engineering Journal, 2019, 370: 1128-1153. |
52 | KAMAL Muhammad Shahzad, RAZZAK Shaikh A, HOSSAIN Mohammad M. Catalytic oxidation of volatile organic compounds (VOCs) —A review[J]. Atmospheric Environment, 2016, 140: 117-134. |
53 | HOSSEINI M, BARAKAT T, COUSIN R, et al. Catalytic performance of core-shell and alloy Pd-Au nanoparticles for total oxidation of VOC: The effect of metal deposition[J]. Applied Catalysis B: Environmental, 2012, 111/112: 218-224. |
54 | PALACIO L A, SILVA E R, CATALÃO R, et al. Performance of supported catalysts based on a new copper vanadate-type precursor for catalytic oxidation of toluene[J]. Journal of Hazardous Materials, 2008, 153(1/2): 628-634. |
55 | MENG Xiaoling, MENG Lingke, GONG Yanjun, et al. Modifying Y zeolite with chloropropyl for improving Cu load on Y zeolite as a super Cu/Y catalyst for toluene oxidation[J]. RSC Advances, 2021, 11(59): 37528-37539. |
56 | ROMERO Douglas, CHLALA Dayan, LABAKI Madona, et al. Removal of toluene over NaX zeolite exchanged with Cu2+ [J]. Catalysts, 2015, 5(3): 1479-1497. |
57 | XING Xin, LI Na, SUN Yonggang, et al. Selective catalytic oxidation of n-butylamine over Cu-zeolite catalysts[J]. Catalysis Today, 2020, 339: 192-199. |
58 | ZHANG Chuanhui, WANG Yating, LI Genqin, et al. Tuning smaller Co3O4 nanoparticles onto HZSM-5 zeolite via complexing agents for boosting toluene oxidation performance[J]. Applied Surface Science, 2020, 532: 147320. |
59 | Anna ROKICIŃSKA, DROZDEK Marek, DUDEK Barbara, et al. Cobalt-containing BEA zeolite for catalytic combustion of toluene[J]. Applied Catalysis B: Environmental, 2017, 212: 59-67. |
60 | HUANG He, ZHANG Chuanhui, WANG Lei, et al. Promotional effect of HZSM-5 on the catalytic oxidation of toluene over MnO x /HZSM-5 catalysts[J]. Catalysis Science & Technology, 2016, 6(12): 4260-4270. |
61 | ZHANG Chuanhui, HUANG He, LI Genqin, et al. Zeolitic acidity as a promoter for the catalytic oxidation of toluene over MnO x /HZSM-5 catalysts[J]. Catalysis Today, 2019, 327: 374-381. |
62 | SU Yun, FU Kaixuan, PANG Caihong, et al. Recent advances of chlorinated volatile organic compounds’ oxidation catalyzed by multiple catalysts: Reasonable adjustment of acidity and redox properties[J]. Environmental Science & Technology, 2022, 56(14): 9854-9871. |
63 | YANG Dengyao, FU Shiyu, HUANG Shushu, et al. The preparation of hierarchical Pt/ZSM-5 catalysts and their performance for toluene catalytic combustion[J]. Microporous and Mesoporous Materials, 2020, 296: 109802. |
64 | CHEN Chunyu, ZHU Jie, CHEN Fang, et al. Enhanced performance in catalytic combustion of toluene over mesoporous Beta zeolite-supported platinum catalyst[J]. Applied Catalysis B: Environmental, 2013, 140/141: 199-205. |
65 | KHAWAJA Rebecca EL, SONAR Shilpa, BARAKAT Tarek, et al. VOCs catalytic removal over hierarchical porous zeolite NaY supporting Pt or Pd nanoparticles[J]. Catalysis Today, 2022, 405/406: 212-220. |
66 | ZHANG Jingyan, RAO Cheng, PENG Honggen, et al. Enhanced toluene combustion performance over Pt loaded hierarchical porous MOR zeolite[J]. Chemical Engineering Journal, 2018, 334: 10-18. |
67 | CHEN Chunyu, WANG Xiong, ZHANG Jian, et al. Superior performance in catalytic combustion of toluene over KZSM-5 zeolite supported platinum catalyst[J]. Catalysis Letters, 2014, 144(11): 1851-1859. |
68 | CHEN Chunyu, WANG Xiong, ZHANG Jian, et al. Superior performance in catalytic combustion of toluene over mesoporous ZSM-5 zeolite supported platinum catalyst[J]. Catalysis Today, 2015, 258: 190-195. |
69 | SUN Wenjuan, YANG Zhenglong, XU Yanbin, et al. Fabrication of Pd3@Beta for catalytic combustion of VOCs by efficient Pd3 cluster and seed-directed hydrothermal syntheses[J]. RSC Advances, 2020, 10(22): 12772-12779. |
70 | CHEN Chunyu, CHEN Fang, ZHANG Ling, et al. Importance of platinum particle size for complete oxidation of toluene over Pt/ZSM-5 catalysts[J]. Chemical Communications, 2015, 51(27): 5936-5938. |
71 | JIANG Haoxi, LIU Zhonghua, YAO Chuanxu, et al. Preparation of highly dispersed Pt/Hβ catalyst via supercritical fluid deposition and its catalytic performance for combustion of toluene[J]. Microporous and Mesoporous Materials, 2022, 335: 111842. |
72 | YANG Lizhe, LIU Qingling, HAN Rui, et al. Confinement and synergy effect of bimetallic Pt-Mn nanoparticles encapsulated in ZSM-5 zeolite with superior performance for acetone catalytic oxidation[J]. Applied Catalysis B: Environmental, 2022, 309: 121224. |
73 | PENG Honggen, DONG Tao, YANG Shenyou, et al. Intra-crystalline mesoporous zeolite encapsulation-derived thermally robust metal nanocatalyst in deep oxidation of light alkanes[J]. Nature Communications, 2022, 13: 295. |
74 | MOLINER Manuel, GABAY Jadeene E, KLIEWER Chris E, et al. Reversible transformation of Pt nanoparticles into single atoms inside high-silica chabazite zeolite[J]. Journal of the American Chemical Society, 2016, 138(48): 15743-15750. |
75 | HAN Fei, YUAN Mengqi, MINE Shinya, et al. Formation of highly active superoxide sites on CuO nanoclusters encapsulated in SAPO-34 for catalytic selective ammonia oxidation[J]. ACS Catalysis, 2019, 9(11): 10398-10408. |
76 | ZHANG Jian, WANG Liang, SHAO Yi, et al. A Pd@Zeolite catalyst for nitroarene hydrogenation with high product selectivity by sterically controlled adsorption in the zeolite micropores [J]. Angewandte Chemie International Edition, 2017, 56(33): 9747-9751. |
77 | ZHANG Jian, WANG Liang, ZHANG Bingsen, et al. Sinter-resistant metal nanoparticle catalysts achieved by immobilization within zeolite crystals via seed-directed growth[J]. Nature Catalysis, 2018, 1(7): 540-546. |
78 | WANG Yeqing, WANG Chengtao, WANG Lingxiang, et al. Zeolite fixed metal nanoparticles: New perspective in catalysis[J]. Accounts of Chemical Research, 2021, 54(11): 2579-2590. |
79 | ZHU Xinbao, HE Xinyu, GUO Longhui, et al. Hydrophobic modification of ZSM-5-encapsulated uniform Pt nanoparticles for catalytic oxidation of volatile organic compounds[J]. ACS Applied Nano Materials, 2022, 5(3): 3374-3385. |
80 | XIAO Hailin, WU Junliang, WANG Xueqing, et al. Ozone-enhanced deep catalytic oxidation of toluene over a platinum-ceria-supported BEA zeolite catalyst[J]. Molecular Catalysis, 2018, 460: 7-15. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[6] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[7] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[8] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[9] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[10] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[11] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[12] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[13] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[14] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[15] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |