Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (9): 4731-4745.DOI: 10.16085/j.issn.1000-6613.2022-1905
• Materials science and technology • Previous Articles Next Articles
SHI Keke(), LIU Muzi, ZHAO Qiang, LI Jinping, LIU Guang()
Received:
2022-10-13
Revised:
2023-01-01
Online:
2023-09-28
Published:
2023-09-15
Contact:
LIU Guang
通讯作者:
刘光
作者简介:
史柯柯(1998—),女,硕士研究生,研究方向为镁基固态储氢技术。E-mail:1349177646@qq.com。
基金资助:
CLC Number:
SHI Keke, LIU Muzi, ZHAO Qiang, LI Jinping, LIU Guang. Properties and research progress of magnesium based hydrogen storage materials[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4731-4745.
史柯柯, 刘木子, 赵强, 李晋平, 刘光. 镁基储氢材料的性能及研究进展[J]. 化工进展, 2023, 42(9): 4731-4745.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1905
合金 | Tonset/℃ | 焓变ΔH /kJ·mol-1 H2 | 氢质量分数 /% | 参考 文献 |
---|---|---|---|---|
Mg2Ni | 254 | 64.5 | 3.6 | [ |
Mg2FeH6 | — | 77.4 | 5.5 | [ |
Mg2CoH5 | 317 | 83.2 | 4.4 | [ |
Mg2Si | — | 36.4 | 5.0 | [ |
Mg2Cu | 273 | 72.6 | 2.53 | [ |
Mg17Al12 | 250 | 73.8 | 5.7 | [ |
Mg3Cd | — | 65.5 | 2.8 | [ |
Mg0.95In0.05 | — | 68.1 | 5.3 | [ |
合金 | Tonset/℃ | 焓变ΔH /kJ·mol-1 H2 | 氢质量分数 /% | 参考 文献 |
---|---|---|---|---|
Mg2Ni | 254 | 64.5 | 3.6 | [ |
Mg2FeH6 | — | 77.4 | 5.5 | [ |
Mg2CoH5 | 317 | 83.2 | 4.4 | [ |
Mg2Si | — | 36.4 | 5.0 | [ |
Mg2Cu | 273 | 72.6 | 2.53 | [ |
Mg17Al12 | 250 | 73.8 | 5.7 | [ |
Mg3Cd | — | 65.5 | 2.8 | [ |
Mg0.95In0.05 | — | 68.1 | 5.3 | [ |
纳米材料 | Tonset/℃ | 焓变ΔH/kJ·mol-1 H2 | 活化能Ea/kJ·mol-1 H2 | 氢质量分数/% | 参考文献 | ||
---|---|---|---|---|---|---|---|
Abs | Des | Abs | Des | ||||
MgH2-0.1TiH2 | 180 | — | 68 | — | 54.8 | 6.2 | [ |
MgH2/c-NbH x | 237.2 | — | — | — | 50.4 | 6.1 | [ |
Mg NCs/PMMA | — | 25 | 79 | — | — | 6 | [ |
MgH2胶体 | 100 | — | — | — | — | 7.6 | [ |
Mg-HDA | 115 | — | — | — | — | — | [ |
超细MgH2 | 30 | — | 59.5 | 28 | 80 | 6.7 | [ |
rGO-Mg | — | 65.6 | 69.4 | 60.8 | 92.9 | 6.5 | [ |
Ni-doped rGO-Mg | — | 63.9 | 66.9 | — | — | 6.5 | [ |
MgH2/ACF | — | 63.8 | — | — | 52 | — | [ |
20% MgH2/CMK3 | 253 | — | 52.38 | — | — | 1.8 | [ |
Ni-MHGH-75 | — | 62.1 | — | 22.7 | 64.7 | 5.4 | [ |
MHCH-5 | — | 46.9 | 49.2 | 31 | 43 | 6.63 | [ |
MgH2/Ni@pCNF | 200 | — | — | 25.4 | 96.58 | 4.1 | [ |
MgH2@CoS-NBs | — | 65.6 | 68.1 | 57.4 | 120.8 | 3.23 | [ |
纳米线 | — | 63.3 | — | 33.5 | 38.8 | — | [ |
Mg92V8@C | — | — | — | 41 | 67 | 5.2 | [ |
纳米材料 | Tonset/℃ | 焓变ΔH/kJ·mol-1 H2 | 活化能Ea/kJ·mol-1 H2 | 氢质量分数/% | 参考文献 | ||
---|---|---|---|---|---|---|---|
Abs | Des | Abs | Des | ||||
MgH2-0.1TiH2 | 180 | — | 68 | — | 54.8 | 6.2 | [ |
MgH2/c-NbH x | 237.2 | — | — | — | 50.4 | 6.1 | [ |
Mg NCs/PMMA | — | 25 | 79 | — | — | 6 | [ |
MgH2胶体 | 100 | — | — | — | — | 7.6 | [ |
Mg-HDA | 115 | — | — | — | — | — | [ |
超细MgH2 | 30 | — | 59.5 | 28 | 80 | 6.7 | [ |
rGO-Mg | — | 65.6 | 69.4 | 60.8 | 92.9 | 6.5 | [ |
Ni-doped rGO-Mg | — | 63.9 | 66.9 | — | — | 6.5 | [ |
MgH2/ACF | — | 63.8 | — | — | 52 | — | [ |
20% MgH2/CMK3 | 253 | — | 52.38 | — | — | 1.8 | [ |
Ni-MHGH-75 | — | 62.1 | — | 22.7 | 64.7 | 5.4 | [ |
MHCH-5 | — | 46.9 | 49.2 | 31 | 43 | 6.63 | [ |
MgH2/Ni@pCNF | 200 | — | — | 25.4 | 96.58 | 4.1 | [ |
MgH2@CoS-NBs | — | 65.6 | 68.1 | 57.4 | 120.8 | 3.23 | [ |
纳米线 | — | 63.3 | — | 33.5 | 38.8 | — | [ |
Mg92V8@C | — | — | — | 41 | 67 | 5.2 | [ |
复合材料 | Tonset/℃ | 焓变ΔH/kJ·mol-1 H2 | 活化能Ea/kJ·mol-1 H2 | 氢质量分数/% | 参考文献 | ||
---|---|---|---|---|---|---|---|
Abs | Des | Abs | Des | ||||
MgH-4%Ni NFs | 143 | — | — | — | 81.5 | 7.02 | [ |
o-Nb2O5 | 195 | — | 74.7 | — | 101 | 6.4 | [ |
2D-TiNb2O7 nanoflakes | 178 | — | 75.2 | — | 100.4 | 7.0 | [ |
MgH2-10%TiC | — | — | — | — | 144.62 | 6.01 | [ |
MgH2:Fe3O4@GS | 262 | 60.62 | 66.34 | — | 90.53 | 6.2 | [ |
10%-TiFe+5%-CNTs | 210 | — | 80.6 | 60.7 | — | 6.2 | [ |
MgH2-Co/Pd@B-CNTs | 198.9 | — | — | — | 76.66 | 6.67 | [ |
MgH2-10% TiO2@C | 205 | — | 73.6 | 38 | 106 | 6.5 | [ |
MgH2-TiO2 SCNPs/AC | 163.5 | — | — | — | 69.2 | 6.5 | [ |
复合材料 | Tonset/℃ | 焓变ΔH/kJ·mol-1 H2 | 活化能Ea/kJ·mol-1 H2 | 氢质量分数/% | 参考文献 | ||
---|---|---|---|---|---|---|---|
Abs | Des | Abs | Des | ||||
MgH-4%Ni NFs | 143 | — | — | — | 81.5 | 7.02 | [ |
o-Nb2O5 | 195 | — | 74.7 | — | 101 | 6.4 | [ |
2D-TiNb2O7 nanoflakes | 178 | — | 75.2 | — | 100.4 | 7.0 | [ |
MgH2-10%TiC | — | — | — | — | 144.62 | 6.01 | [ |
MgH2:Fe3O4@GS | 262 | 60.62 | 66.34 | — | 90.53 | 6.2 | [ |
10%-TiFe+5%-CNTs | 210 | — | 80.6 | 60.7 | — | 6.2 | [ |
MgH2-Co/Pd@B-CNTs | 198.9 | — | — | — | 76.66 | 6.67 | [ |
MgH2-10% TiO2@C | 205 | — | 73.6 | 38 | 106 | 6.5 | [ |
MgH2-TiO2 SCNPs/AC | 163.5 | — | — | — | 69.2 | 6.5 | [ |
1 | SCHLAPBACH Louis, Andreas ZÜTTEL. Hydrogen-storage materials for mobile applications[J]. Nature, 2001, 414(6861): 353-358. |
2 | SADHASIVAM T, KIM Hee-Tak, JUNG Seunghun, et al. Dimensional effects of nanostructured Mg/MgH2 for hydrogen storage applications: A review[J]. Renewable and Sustainable Energy Reviews, 2017, 72: 523-534. |
3 | MURADOV Nazim Z, Nejat VEZIROĞLU T. “Green” path from fossil-based to hydrogen economy: An overview of carbon-neutral technologies[J]. International Journal of Hydrogen Energy, 2008, 33(23): 6804-6839. |
4 | 张秋雨, 邹建新, 任莉, 等. 核壳结构纳米镁基复合储氢材料研究进展[J]. 材料科学与工艺, 2020, 28(3): 58-67. |
ZHANG Qiuyu, ZOU Jianxin, REN Li, et al. Research development of core-shell nanostructured Mg-based hydrogen storage composite materials[J]. Materials Science and Technology, 2020, 28(3): 58-67. | |
5 | ABE J O, POPOOLA A P I, AJENIFUJA E, et al. Hydrogen energy, economy and storage: Review and recommendation[J]. International Journal of Hydrogen Energy, 2019, 44(29): 15072-15086. |
6 | AHMED Alauddin, SETH Saona, PUREWAL Justin, et al. Exceptional hydrogen storage achieved by screening nearly half a million metal-organic frameworks[J]. Nature Communications, 2019, 10(1): 1568. |
7 | LEE Seul-Yi, LEE Jong-Hoon, KIM Yeong-Hun, et al. Recent progress using solid-state materials for hydrogen storage: A short review[J]. Processes, 2022, 10(2): 304. |
8 | BARDHAN Rizia, RUMINSKI Anne M, BRAND Alyssa, et al. Magnesium nanocrystal-polymer composites: A new platform for designer hydrogen storage materials[J]. Energy & Environmental Science, 2011, 4(12): 4882-4895. |
9 | Kondo-Francois AGUEY-ZINSOU, José-Ramón ARES-FERNÃNDEZ. Hydrogen in magnesium: new perspectives toward functional stores[J]. Energy & Environmental Science, 2010, 3(5): 526-543. |
10 | STAMPFER J F, HOLLEY C E, SUTTLE J F. The magnesium-hydrogen System1-3 [J]. Journal of the American Chemical Society, 1960, 82(14): 3504-3508. |
11 | BOHMHAMMEL K, WOLF U, WOLF G, et al. Thermodynamic optimization of the system magnesium-hydrogen[J]. Thermochimica Acta, 1999, 337(1/2): 195-199. |
12 | 雍辉, 李玉钏, 胡季帆, 等. 镁基储氢合金的研究现状[J]. 金属功能材料, 2021, 28(5): 50-56. |
YONG Hui, LI Yuchuan, HU Jifan, et al. Recent research of Mg-based hydrogen storage material[J]. Metallic Functional Materials, 2021, 28(5): 50-56. | |
13 | Andreas ZÜTTEL. Materials for hydrogen storage[J]. Materials Today, 2003, 6(9): 24-33. |
14 | BANERJEE S, PILLAI C G S, MAJUMDER C. Dissociation and diffusion of hydrogen on the Mg(0001) surface: Catalytic effect of V and Ni double substitution[J]. The Journal of Physical Chemistry C, 2009, 113(24): 10574-10579. |
15 | MARTINO Paola, CHIESA Mario, CRISTINA PAGANINI Maria, et al. Coadsorption of NO and H2 at the surface of MgO monitored by EPR spectroscopy. Towards a site specific discrimination of polycrystalline oxide surfaces[J]. Surface Science, 2003, 527(1/2/3): 80-88. |
16 | LUO Qun, LI Jianding, LI Bo, et al. Kinetics in Mg-based hydrogen storage materials: Enhancement and mechanism[J]. Journal of Magnesium and Alloys, 2019, 7(1): 58-71. |
17 | REILLY James J, WISWALL Richard H. Reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4 [J]. Inorganic Chemistry, 1968, 7(11): 2254-2256. |
18 | POZZO M, ALFÈ D. Structural properties and enthalpy of formation of magnesium hydride from quantum Monte Carlo calculations[J]. Physical Review B, 2008, 77(10): 104103. |
19 | OUYANG Liuzhang, LIU Fen, WANG Hui, et al. Magnesium-based hydrogen storage compounds: A review[J]. Journal of Alloys and Compounds, 2020, 832: 154865. |
20 | MORINAGA M, YUKAWA H. Nature of chemical bond and phase stability of hydrogen storage compounds[J]. Materials Science and Engineering: A, 2002, 329/330/331: 268-275. |
21 | Borislav BOGDANOVIĆ, REISER Alexander, SCHLICHTE Klaus, et al. Thermodynamics and dynamics of the Mg-Fe-H system and its potential for thermochemical thermal energy storage[J]. Journal of Alloys and Compounds, 2002, 345(1/2): 77-89. |
22 | GENNARI F C, CASTRO F J, J J Andrade GAMBOA. Synthesis of Mg2FeH6 by reactive mechanical alloying: Formation and decomposition properties[J]. ChemInform, 2003, 34(12): 261-267. |
23 | CHEN J, TAKESHITA H T, CHARTOUNI D, et al. Synthesis and characterization of nanocrystalline Mg2CoH5 obtained by mechanical alloying[J]. Journal of Materials Science, 2001, 36(24): 5829-5834. |
24 | VAJO John J, MERTENS Florian, Channing C AHN, et al. Altering hydrogen storage properties by hydride destabilization through alloy formation: LiH and MgH2 destabilized with Si[J]. The Journal of Physical Chemistry B, 2004, 108(37): 13977-13983. |
25 | REILLY James J, WISWALL Richard H. Reaction of hydrogen with alloys of magnesium and copper[J]. Inorganic Chemistry, 1967, 6(12): 2220-2223. |
26 | LIU Tong, QIN Chenggong, ZHANG Tongwen, et al. Synthesis of Mg@Mg17Al12 ultrafine particles with superior hydrogen storage properties by hydrogen plasma-metal reaction[J]. Journal of Materials Chemistry, 2012, 22(37): 19831-19838. |
27 | SKRIPNYUK V M, RABKIN E. Mg3Cd: A model alloy for studying the destabilization of magnesium hydride[J]. International Journal of Hydrogen Energy, 2012, 37(14): 10724-10732. |
28 | ZHONG H C, WANG H, LIU J W, et al. Altered desorption enthalpy of MgH2 by the reversible formation of Mg(In) solid solution[J]. Scripta Materialia, 2011, 65(4): 285-287. |
29 | KIM Ki Chul, DAI Bing, KARL JOHNSON J, et al. Assessing nanoparticle size effects on metal hydride thermodynamics using the Wulff construction[J]. Nanotechnology, 2009, 20(20): 204001. |
30 | VAJEESTON P, RAVINDRAN P, FICHTNER M, et al. Influence of crystal structure of bulk phase on the stability of nanoscale phases: Investigation on MgH2 derived nanostructures[J]. The Journal of Physical Chemistry C, 2012, 116(35): 18965-18972. |
31 | VAJEESTON P, SARTORI S, RAVINDRAN P, et al. MgH2 in carbon scaffolds: A combined experimental and theoretical investigation[J]. The Journal of Physical Chemistry C, 2012, 116(40): 21139-21147. |
32 | LU Jun, CHOI Young Joon, FANG Zhigang Zak, et al. Hydrogen storage properties of nanosized MgH2-0.1TiH2 prepared by ultrahigh-energy-high-pressure milling[J]. Journal of the American Chemical Society, 2009, 131(43): 15843-15852. |
33 | ZHANG Liuting, XIAO Xuezhang, XU Chenchen, et al. Remarkably improved hydrogen storage performance of MgH2 catalyzed by multivalence NbH x nanoparticles[J]. The Journal of Physical Chemistry C, 2015, 119(16): 8554-8562. |
34 | SUN Yahui, Kondo-Francois AGUEY-ZINSOU. Synthesis of magnesium nanofibers by electroless reduction and their hydrogen interaction properties[J]. Particle & Particle Systems Characterization, 2017, 34(4): 1600276. |
35 | LIU Wei, Kondo-Francois AGUEY-ZINSOU. Hydrogen storage properties of in situ stabilised magnesium nanoparticles generated by electroless reduction with alkali metals[J]. International Journal of Hydrogen Energy, 2015, 40(47): 16948-16960. |
36 | LIU Wei, Kondo-Francois AGUEY-ZINSOU. Size effects and hydrogen storage properties of Mg nanoparticles synthesised by an electroless reduction method[J]. Journal of Materials Chemistry A, 2014, 2(25): 9718-9726. |
37 | JEON Ki-Joon, MOON Hoi Ri, RUMINSKI Anne M, et al. Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts[J]. Nature Materials, 2011, 10(4): 286-290. |
38 | Kondo-Francois AGUEY-ZINSOU, José-Ramón ARES-FERNÁNDEZ. Synthesis of colloidal magnesium: A near room temperature store for hydrogen[J]. Chemistry of Materials, 2008, 20(2): 376-378. |
39 | KALIDINDI Suresh Babu, JAGIRDAR Balaji R. Highly monodisperse colloidal magnesium nanoparticles by room temperature digestive ripening[J]. Inorganic Chemistry, 2009, 48(10): 4524-4529. |
40 | NORBERG Nick S, ARTHUR Timothy S, FREDRICK Sarah J, et al. Size-dependent hydrogen storage properties of Mg nanocrystals prepared from solution[J]. Journal of the American Chemical Society, 2011, 133(28): 10679-10681. |
41 | ZHANG Xin, LIU Yongfeng, REN Zhuanghe, et al. Realizing 6.7 wt% reversible storage of hydrogen at ambient temperature with non-confined ultrafine magnesium hydrides[J]. Energy & Environmental Science, 2021, 14(4): 2302-2313. |
42 | WAN Liwen F, LIU Yisheng, CHO Eun Seon, et al. Atomically thin interfacial suboxide key to hydrogen storage performance enhancements of magnesium nanoparticles encapsulated in reduced graphene oxide[J]. Nano Letters, 2017, 17(9): 5540-5545. |
43 | CHO Eun Seon, RUMINSKI Anne M, ALONI Shaul, et al. Graphene oxide/metal nanocrystal multilaminates as the atomic limit for safe and selective hydrogen storage[J]. Nature Communications, 2016, 7: 10804. |
44 | CHO Eun Seon, RUMINSKI Anne M, LIU Yisheng, et al. Hierarchically controlled inside-out doping of Mg nanocomposites for moderate temperature hydrogen storage[J]. Advanced Functional Materials, 2017, 27(47): 1704316. |
45 | CHO YongJun, KANG ShinYoung, WOOD Brandon C, et al. Heteroatom-doped graphenes as actively interacting 2D encapsulation media for Mg-based hydrogen storage[J]. ACS Applied Materials & Interfaces, 2022, 14(18): 20823-20834. |
46 | NIELSEN Thomas K, MANICKAM Kandavel, HIRSCHER Michael, et al. Confinement of MgH2 nanoclusters within nanoporous aerogel scaffold materials[J]. ACS Nano, 2009, 3(11): 3521-3528. |
47 | Zhirong ZHAO-KARGER, HU Jianjiang, ROTH Arne, et al. Altered thermodynamic and kinetic properties of MgH(2) infiltrated in microporous scaffold[J]. Chemical Communications, 2010, 46(44): 8353-8355. |
48 | JIA Yi, SUN Chenghua, CHENG Lina, et al. Destabilization of Mg-H bonding through nano-interfacial confinement by unsaturated carbon for hydrogen desorption from MgH2 [J]. Physical Chemistry Chemical Physics, 2013, 15(16): 5814-5820. |
49 | KONAROVA Muxina, TANKSALE Akshat, NORBERTO BELTRAMINI Jorge, et al. Effects of nano-confinement on the hydrogen desorption properties of MgH2 [J]. Nano Energy, 2013, 2(1): 98-104. |
50 | XIA Guanglin, TAN Yingbin, CHEN Xiaowei, et al. Monodisperse magnesium hydride nanoparticles uniformly self-assembled on graphene[J]. Advanced Materials, 2015, 27(39): 5981-5988. |
51 | SHINDE S S, KIM Dong Hyung, YU Jin Young, et al. Self-assembled air-stable magnesium hydride embedded in 3-D activated carbon for reversible hydrogen storage[J]. Nanoscale, 2017, 9(21): 7094-7103. |
52 | REN Li, ZHU Wen, ZHANG Qiuyu, et al. MgH2 confinement in MOF-derived N-doped porous carbon nanofibers for enhanced hydrogen storage[J]. Chemical Engineering Journal, 2022, 434: 134701. |
53 | MA Zhewen, PANDA Subrata, ZHANG Qiuyu, et al. Improving hydrogen sorption performances of MgH2 through nanoconfinement in a mesoporous CoS nano-boxes scaffold[J]. Chemical Engineering Journal, 2021, 406: 126790. |
54 | 张秋雨, 杜四川, 马哲文, 等. 镁基储氢材料的研究进展[J]. 科学通报, 2022, 67(19): 2158-2171. |
ZHANG Qiuyu, DU Sichuan, MA Zhewen, et al. Recent advances in Mg-based hydrogen storage materials[J]. Chinese Science Bulletin, 2022, 67(19): 2158-2171. | |
55 | MATSUMOTO I, AKIYAMA T, NAKAMURA Y, et al. Controlled shape of magnesium hydride synthesized by chemical vapor deposition[J]. Journal of Alloys and Compounds, 2010, 507(2): 502-507. |
56 | LI Weiyang, LI Chunsheng, MA Hua, et al. Magnesium nanowires: Enhanced kinetics for hydrogen absorption and desorption[J]. Journal of the American Chemical Society, 2007, 129(21): 6710-6711. |
57 | WU Xinxing, ZHANG Ruiqi, YANG Jinlong. A first-principles study of the thermodynamic and electronic properties of Mg and MgH2 nanowires[J]. Physical Chemistry Chemical Physics, 2016, 18(28): 19412-19419. |
58 | CHEN Ming, HU Miaomiao, XIE Xiubo, et al. High loading nanoconfinement of V-decorated Mg with 1 nm carbon shells: Hydrogen storage properties and catalytic mechanism[J]. Nanoscale, 2019, 11(20): 10045-10055. |
59 | POZZO M, ALFÈ D. Hydrogen dissociation and diffusion on transition metal (=Ti, Zr, V, Fe, Ru, Co, Rh, Ni, Pd, Cu, Ag)-doped Mg(0001) surfaces[J]. International Journal of Hydrogen Energy, 2009, 34(4): 1922-1930. |
60 | CHEN Haipeng, YU Hao, ZHANG Qianqian, et al. Enhancement in dehydriding performance of magnesium hydride by iron incorporation: A combined experimental and theoretical investigation[J]. Journal of Power Sources, 2016, 322: 179-186. |
61 | LIANG G, HUOT J, BOILY S, et al. Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2-Tm (Tm=Ti, V, Mn, Fe and Ni) systems[J]. Journal of Alloys and Compounds, 1999, 292(1/2): 247-252. |
62 | CUI Jie, LIU Jiangwen, WANG Hui, et al. Mg-TM (TM: Ti, Nb, V, Co, Mo or Ni) core-shell like nanostructures: Synthesis, hydrogen storage performance and catalytic mechanism[J]. Journal of Materials Chemistry A, 2014, 2(25): 9645-9655. |
63 | CHEN Jie, XIA Guanglin, GUO Zaiping, et al. Porous Ni nanofibers with enhanced catalytic effect on the hydrogen storage performance of MgH2 [J]. Journal of Materials Chemistry A, 2015, 3(31): 15843-15848. |
64 | ZHANG J, YAN S, QU H. Recent progress in magnesium hydride modified through catalysis and nanoconfinement[J]. International Journal of Hydrogen Energy, 2018, 43(3): 1545-1565. |
65 | TERZIEVA M, KHRUSSANOVA M, PESHEV P. Dehydriding kinetics of mechanically alloyed mixtures of magnesium with some 3d transition metal oxides[J]. International Journal of Hydrogen Energy, 1991, 16(4): 265-270. |
66 | OELERICH W, KLASSEN T, BORMANN R. Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials[J]. Journal of Alloys and Compounds, 2001, 315(1/2): 237-242. |
67 | FRIEDRICHS O, AGUEY-ZINSOU F, J R Ares FERNÁNDEZ, et al. MgH2 with Nb2O5 as additive, for hydrogen storage: Chemical, structural and kinetic behavior with heating[J]. Acta Materialia, 2006, 54(1): 105-110. |
68 | PUKAZHSELVAN D, SANDHYA K S, RAMASAMY Devaraj, et al. Active catalytic species generated in situ in zirconia incorporated hydrogen storage material magnesium hydride[J]. Journal of Magnesium and Alloys, 2022, 10(3): 786-796. |
69 | ZHANG Xuelian, WANG Ke, ZHANG Xin, et al. Synthesis process and catalytic activity of Nb2O5 hollow spheres for reversible hydrogen storage of MgH2 [J]. International Journal of Energy Research, 2021, 45(2): 3129-3141. |
70 | SUN Gaili, LI Yuanyuan, ZHAO Xinxin, et al. First-principles investigation of energetics and electronic structures of Ni and Sc co-doped MgH2 [J]. American Journal of Analytical Chemistry, 2016, 7(1): 34-42. |
71 | XIAN Kaicheng, WU Meihong, GAO Mingxia, et al. A unique nanoflake-shape bimetallic Ti-Nb oxide of superior catalytic effect for hydrogen storage of MgH2 [J]. Small, 2022, 18(43): 2107013. |
72 | JIN Seon-Ah, SHIM Jae-Hyeok, CHO Young Whan, et al. Dehydrogenation and hydrogenation characteristics of MgH2 with transition metal fluorides[J]. Journal of Power Sources, 2007, 172(2): 859-862. |
73 | MALKA I E, PISAREK M, CZUJKO T, et al. A study of the ZrF4, NbF5, TaF5, and TiCl3 influences on the MgH2 sorption properties[J]. International Journal of Hydrogen Energy, 2011, 36(20): 12909-12917. |
74 | FAN Mei-Qiang, LIU Shusheng, ZHANG Yao, et al. Superior hydrogen storage properties of MgH2-10 wt.% TiC composite[J]. Energy, 2010, 35(8): 3417-3421. |
75 | BHATNAGAR Ashish, PANDEY Sunita K, VISHWAKARMA Alok K, et al. Fe3O4@graphene as a superior catalyst for hydrogen de/absorption from/in MgH2/Mg[J]. Journal of Materials Chemistry A, 2016, 4(38): 14761-14772. |
76 | LOTOSKYY Mykhaylo, DENYS Roman, YARTYS Volodymyr A, et al. An outstanding effect of graphite in nano-MgH2-TiH2 on hydrogen storage performance[J]. Journal of Materials Chemistry A, 2018, 6(23): 10740-10754. |
77 | LU Xiong, ZHANG Liuting, YU Haijie, et al. Achieving superior hydrogen storage properties of MgH2 by the effect of TiFe and carbon nanotubes[J]. Chemical Engineering Journal, 2021, 422: 130101. |
78 | LIU Meijia, XIAO Xuezhang, ZHAO Shuchun, et al. Facile synthesis of Co/Pd supported by few-walled carbon nanotubes as an efficient bidirectional catalyst for improving the low temperature hydrogen storage properties of magnesium hydride[J]. Journal of Materials Chemistry A, 2019, 7(10): 5277-5287. |
79 | JIA Yi, SUN Chenghua, PENG Ye, et al. Metallic Ni nanocatalyst in situ formed from a metal-organic-framework by mechanochemical reaction for hydrogen storage in magnesium[J]. Journal of Materials Chemistry A, 2015, 3(16): 8294-8299. |
80 | ZHANG Xin, LENG Zihan, GAO Mingxia, et al. Enhanced hydrogen storage properties of MgH2 catalyzed with carbon-supported nanocrystalline TiO2 [J]. Journal of Power Sources, 2018, 398: 183-192. |
81 | ZHANG Meng, XIAO Xuezhang, MAO Jianfeng, et al. Synergistic catalysis in monodispersed transition metal oxide nanoparticles anchored on amorphous carbon for excellent low-temperature dehydrogenation of magnesium hydride[J]. Materials Today Energy, 2019, 12: 146-154. |
[1] | LIU Muzi, SHI Keke, ZHAO Qiang, LI Jinping, LIU Guang. Research progress of solid hydrogen storage materials [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4746-4769. |
[2] | SUN Chongzheng, FAN Xin, LI Yuxing, XU Jie, HAN Hui, LIU Liang. Coupling characteristics of hydrogen heat transfer and normal-parahydrogen conversion in offshore porous media channels [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1281-1290. |
[3] | YUE Zihan, LONG Zhen, ZHOU Xuebing, ZANG Xiaoya, LIANG Deqing. State of the art on hydrogen storage of sⅡ clathrate hydrate [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5121-5134. |
[4] | HAN Li, LI Qi, LENG Guoyun, WEI Wenzhen, LI Yuying, WU Yuting. Latest research progress of hydrogen energy storage technology [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 108-117. |
[5] | LI Haoyang, ZHANG Wei, LI Xiaosen, XU Chungang. Research process of hydrate-based hydrogen storage [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6285-6294. |
[6] | GAO Jiajia, MI Yuanyuan, ZHOU Yang, ZHOU Hongjun, XU Quan. Recent developments in new hydrogen storage materials [J]. Chemical Industry and Engineering Progress, 2021, 40(6): 2962-2971. |
[7] | Yanghao ZHENG, Heping LI, Jianzhong LIU, Daolun LIANG, Junhu ZHOU. Research progress of aluminum hydride used in fuel cells [J]. Chemical Industry and Engineering Progress, 2021, 40(1): 130-138. |
[8] | Yan LI,Yuzhen DENG,Jingling YU,Sifang LI. Research progress in hydrogen production from decomposition of ammonia borane and its regeneration [J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5330-5338. |
[9] | QU Wenmin, HUA Zhengli, LI Xiongying, GU Chaohua, ZHENG Jingyang, ZHAO Yongzhi. Application of TDS technology in the study of hydrogen traps in the materials of hydrogen storage vessels [J]. Chemical Industry and Engineering Progress, 2017, 36(11): 4160-4169. |
[10] | WANG Feng, YANG Yunquan, HU Yongjun, ZENG Yonglin. Advances in the development of methylcyclohexane as a hydrogen storage medium [J]. Chemical Industry and Engineering Progree, 2017, 36(02): 538-547. |
[11] | ZHANG Yuanyuan, ZHAO Jing, LU Xilan, ZHANG Dexiang. Progress in liquid organic hydrogen storage materials [J]. Chemical Industry and Engineering Progree, 2016, 35(09): 2869-2874. |
[12] | SONG Xiaofei, HAO Jianmin, HAN Limin, FENG Xuemin. Research progress of quasicrystal application in catalysis, reinforced composites and hydrogen storage [J]. Chemical Industry and Engineering Progree, 2015, 34(04): 1037-1042. |
[13] | YUAN Huatang,WANG Yijing,YAN Chao,SONG Dawei . Progress in rare earth-based high performance hydrogen storage alloys [J]. Chemical Industry and Engineering Progree, 2012, 31(02 ): 253-258. |
[14] | XIE Yingming,GONG Jinming,LIU Daoping,LI Gang,LIU Ni,QI Yingxia. Hydrogen stored in hydrates——A novel hydrogen storage method [J]. Chemical Industry and Engineering Progree, 2010, 29(5): 796-. |
[15] |
CHEN Zhuo,YANG Yunquan,BAO Jianguo,WANG Weiyan,JIANG Xinmin.
Catalytic performance of Ni/γ-Al2O3 for hydrogen carrier methylcyclohexane dehydrogenation [J]. Chemical Industry and Engineering Progree, 2010, 29(3): 484-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |